Síguenos en las redes sociales:

Instituto de Matemáticas Aplicadas UCV
Riquelme Abarca, Felipe

Riquelme Abarca, Felipe

Doctor en Matemáticas, Université de Rennes 1, Francia.

Master 2 Mathématiques Fondamentales, Université Pierre et Marie Curie - Paris VI, Francia.

Licenciatura en Matemáticas, Pontificia Universidad Católica de Chile

felipe.riquelme@pucv.cl

(+56) 32 227 4019

Pagina del academico

Publicaciones

  • Riquelme, F. and Velozo, A. “On the Hausdorff dimension of geodesics that diverge on average, Submitted.
  • Gelfert, K. and Riquelme, F. “Exceptional sets for geodesic flows of non-compact manifolds, To appear in Discrete and Continuous Dynamical Systems Journal.
  • Riquelme, F. “Entropies for geodesic flows”. This is an appendix from the worl of Gouezel, S., Schapira, B. and Tapie, S. entitled “Pressure at infinity and strong positive recurrence in negative curvature”, Comment. Math. Helv. 98 (2023), no. 3, pp. 431–508.
  • Riquelme, F. and Velozo, A. “Ergodic optimization and zero temperature limits in negative curvature, Ann. Henri Poincaré, Vol. 23 (2022) no. 8, p.2949-2977.
  • Riquelme, F. and Velozo, A. “Escape of mass and entropy for geodesic flows”, Erg. Th. & Dyn. Syst. Journal, Vol. 39 (2019) no. 2, p. 446-473.
  • Riquelme, F. “Ruelle’s inequality in negative curvature”, Discrete and Continuous Dynamical Systems Journal, Vol. 38 (2018) no. 6, p. 2809-2825.
  • Iommi, G., Riquelme, F. and Velozo, A. “Entropy in the cusp and phase transitions for geodesic flows”, Israel Journal of Mathematics, Vol. 225 (2018), p. 609-659.
  • Riquelme, F. “Counterexamples to Ruelle’s inequality in the noncompact case”, Annales de l’Institut Fourier, Vol. 67 (2017) no. 1, p. 23-41.