Surface abéliennes à multiplication quaternionique munie d’une structure de niveau Γ0(N)
Resumen
A theorem of Mazur gives the set of possible prime degrees for rational isogenies between elliptic curves. In this paper, we are working on a similar problem in the case of abelian surfaces of type over
(with
) with quaternionic multiplication (over
) endowed with a
level structure. We prove the following result: for a fixed indefinite quaternion algebra
of discriminant
and a fixed quadratic imaginary field
, there exists an effective bound
such that for a prime number
, not dividing the conductor of the order
, there do not exist abelian surfaces
such that
is a maximal order of
and
is endowed with a
level structure.
Autores: Gillibert, F.
Journal: International Journal of Number Theory
Journal Volume:
Journal Issue:
Journal Page: 1-17
Tipo de publicación: ISI
Fecha de publicación: 2016
Topics: Abelian surfaces, Galois representations, quaternionic multiplications, Shimura curves
DOI: 10.1142/S1793042117500725
URL de la publicación: http://www.worldscientific.com/doi/pdf/10.1142/S1793042117500725?src=recsys
4 Semestres
Más información
4 Semestres
Más información
4 Semestres
Más información
8 Semestres
Más información
8 Semestres
Más información