Síguenos en las redes sociales:

Instituto de Matemáticas Aplicadas UCV

On the Prediction of Atmospheric Corrosion of Metals and Alloys in Chile Using Artificial Neural Networks


Most metals and alloys exposed to the environment suffer deterioration due to the effects of atmospheric corrosion. This study presents results obtained for the corrosion of carbon steel, galvanised steel, copper and aluminium exposed to the environment for a period of 3 years, at 9 different sites around Chile. Mathematical models based on artificial neural networks are used to evaluate the corrosion of the metals and alloys as a function of meteorological variables (relative humidity, temperature and amount of rainfall), pollutants (chloride and sulphur dioxide) and time. The advantages of these models in predicting corrosion is also shown in comparison to traditional statistical regression models when considering the dependence of corrosion as a function of time alone.

Autores: Vera, R., Ossandón, S.

Journal: Internacional Journal of Eletrochemical Sciencie

Journal Volume: 9

Journal Issue: 12

Journal Page: 7131 - 7151

Tipo de publicación: ISI

Fecha de publicación: 2014

Topics: Atmospheric corrosion, weight loss, artificial neural networks, carbon steel, galvanised steel, copper, aluminium


URL de la publicación: http://www.electrochemsci.org/papers/vol9/91207131.pdf

Compartir esta información en: