Nonlinear Parameter Estimation for State-Space ARCH Models with Missing Observations
Resumen
A new mathematical representation, based on a discrete time nonlinear state space formulation, is presented to characterize AutoRegresive Conditional Heteroskedasticity (ARCH) models. A novel parameter estimation procedure for state-space ARCH models with missing observations, based on an Extended Kalman Filter (EKF) approach, is described and successfully evaluated herein. Finally, through a comparison analysis between our proposed estimation method and a Quasi Maximum Likelihood Estimation (QMLE) technique based on different methods of imputation, some numerical results with simulated data, which make evident the effectiveness and relevance of the proposed nonlinear estimation technique are given.
Autores: Ossandón, S., Bahamondes, N.
Journal: Recent Advances in Systems Science and Mathematical Modelling
Journal Volume:
Journal Issue:
Journal Page: 258-263
Tipo de publicación: no_indexada
Fecha de publicación: 2012
Topics: ARCH models, Missing observations, Nonlinear state space model, Nonlinear estimation, Extended Kalman Filter.
URL de la publicación: http://www.wseas.us/e-library/conferences/2012/Paris/MATHSYS/MATHSYS-30.pdf
4 Semestres
Más información
4 Semestres
Más información
4 Semestres
Más información
8 Semestres
Más información
8 Semestres
Más información