Lyapunov exponents for families of rotated linear cocycles
Resumen
In this work, we are interested in the study of the upper Lyapunov exponent λ+(θ) associated to the periodic family of cocycles defined by A_θ(x) := A(x)R_θ, x ∈ X, where A : X → GL+(2, R) is a linear cocycle orientation–preserving and R_θ is a rotation of angle θ ∈ R. We show that if the cocycle A has dominated splitting, then there exists a non empty open set U of parameters θ such that the cocycle Aθ has dominated splitting and the function U ∋ θ → λ +(θ) is real analytic and strictly concave. As a consequence, we obtain that the set of parameters θ where the cocycle A_θ has not dominated splitting is non empty.
Autores: Valenzuela, F., Vásquez, C.
Journal: Nonlinearity
Journal Volume: 28
Journal Issue: 7
Journal Page: 2423–2440
Tipo de publicación: ISI
Fecha de publicación: 2015
Topics: Partial hyperbolicity, Lyapunov exponents, Cocycles
DOI: 10.1088/0951-7715/28/7/2423
URL de la publicación: https://www.researchgate.net/publication/274094294_Lyapunov_exponents_for_families_of_rotated_linear_cocycle
4 Semestres
Más información
4 Semestres
Más información
4 Semestres
Más información
8 Semestres
Más información
8 Semestres
Más información