Síguenos en las redes sociales:

Instituto de Matemáticas Aplicadas UCV

Dispersive and dissipative errors in the DPG method with scaled norms for Helmholtz equation


This paper studies the discontinuous Petrov–Galerkin (DPG) method, where the test space is normed by a modified graph norm. The modification scales one of the terms in the graph norm by an arbitrary positive scaling parameter. The main finding is that as the parameter approaches zero, better results are obtained, under some circumstances, when the method is applied to the Helmholtz equation. The main tool used is a dispersion analysis on the multiple interacting stencils that form the DPG method. The analysis shows that the discrete wavenumbers of the method are complex, explaining the numerically observed artificial dissipation in the computed wave approximations. Since the DPG method is a nonstandard least-squares Galerkin method, its performance is compared with a standard least-squares method having a similar stencil.

Autores: Gopalakrishnan, J., Muga, I., Olivares, N.

Journal: SIAM Journal on Scientific Computing

Journal Volume: 36

Journal Issue: 1

Journal Page: A20-A39

Tipo de publicación: ISI

Fecha de publicación: 2014

Topics: least squares, dispersion, dissipation, quasi optimality, resonance, stencil

DOI: http://dx.doi.org/10.1137/130918186

URL de la publicación: http://epubs.siam.org/doi/10.1137/130918186

Compartir esta información en: