The Multiscale Hybrid-Mixed method for the Maxwell Equations in Heterogeneous Media
Resumen
In this work, we address time dependent wave propagation problems with strong multiscale features (in space and time). Our goal is to design a family of innovative high performance numerical methods suitable to the simulation of such multiscale problems. Particularly, we extend the multiscale hybrid-mixed (MHM) finite element method for the two- and three-dimensional time-dependent Maxwell equations with heterogeneous coefficients. The MHM method arises from the decomposition of the exact electric and magnetic fields in terms of the solutions of locally independent Maxwell problems tied together with a one-field formulation on top of a coarse-mesh skeleton. The multiscale basis functions, which are responsible for upscaling, are driven by local Maxwell problems with tangential component of the magnetic field prescribed on faces. A high-order discontinuous Galerkin method in space combined with a second-order explicit leap-frog scheme in time discretizes the local problems. This makes the MHM method effective and yields a staggered algorithm within a “divide-and-conquer” framework. Several two-dimensional numerical tests assess the optimal convergence of the MHM method and its capacity to preserve the energy principle, as well as its accuracy to solve heterogeneous media problems on coarse meshes.
Autores: Lanteri, S., Paredes, D., Scheid, C., Valentin, F.
Journal: Multiscale Model. Simul.
Journal Volume: 16
Journal Issue: 4
Journal Page: 1648–1683
Tipo de publicación: ISI
Fecha de publicación: 2018
Topics: Maxwell equations, wave model, hybrid method, finite element, multiscale
DOI: 10.1137/16M110037X
URL de la publicación: https://epubs.siam.org/doi/abs/10.1137/16M110037X
4 Semestres
Más información
4 Semestres
Más información
4 Semestres
Más información
8 Semestres
Más información
8 Semestres
Más información