Dinámica Porteña
Dinámica Porteña
El seminario Dinámica Porteña se realiza los viernes entre las 14:30 y 15:30 hrs. en la sala 2-2 del Instituto de Matemáticas.
CONTACTO
Felipe Riquelme
email: dinamica.portena@pucv.cl
phone: (+56 32) 227 4019
Warning: Illegal string offset 'address' in /var/www/html/wp-content/themes/ima/single-seminario_permanente.php on line 69
B
Ver dirección en un mapa ampliado
Calendario 2024
Octubre
25 - Néstor Jara (Universidad de Chile)
Marzo
08 - Yuri Lima (Universidade Federal do Ceará, Brasil)
Calendario 2023
Diciembre
19 - Gerardo Honorato (Universidad de Valparaíso, Chile)
19 - Karina Marín (Universidade Federal de Minas Gerais, Brasil)
19 - Pablo Carrasco (Universidade Federal de Minas Gerais, Brasil)
Noviembre
24 - Alvaro Castañeda (Universidad de Chile, Chile)
10 - Nicolas Arévalo Hurtado (PUC, Chile)
Octubre
20 - Sebastián Donoso (Universidad de Chile, Chile)
Septiembre
29 - Carlos Alvarez Escorcia (PUCV, Chile)
Julio
07 - Andrés Navas (Universidad De Santiago de Chile)
07 - Eduardo Reyes (Max Planck Institute for Mathematics, Alemania)
Abril
28 - Alfredo Calderón Céspedes (Universidad Católica Silva Henríquez, Chile)
21 - Jan Kiwi (Pontificia Universidad Católica de Chile, Chile)
14 - Sebastián Pérez (PUCV, Chile)
Marzo
24 - Ignacio Huerta (Universidad de Chile, Chile)
Calendario 2022
Noviembre
25 - Lorenzo J. Díaz (PUC-Rio, Brazil)
11 - Paulina Cecchi (Universidad de Chile, CMM)
Octubre
14 - Semana de la Matemática IMA-PUCV
07 - Sebastián Barbieri (Universidad De Santiago de Chile)
Septiembre
30 - Radu Saghin (PUCV)
23 - Andrés Navas (Universidad De Santiago de Chile )
09 - Diego Sanhueza
02 - Godofredo Iommi (PUC)
Agosto
26 - Mike Todd, (University of St. Andrews, UK)
12 - Katrin Gelfert (Universidade Federal do Rio de Janeiro, Brasil)
12 - Lorenzo J. Díaz (PUC-Rio, Brazil)
Junio
10 - Nelda Jaque (Universidad de Chile)
03 - Luciana Salgado (Universidade Federal do Rio de Janeiro)
Mayo
27 - Yuki Yayama (Universidad del Bío-Bío, Chile)
20 - Daniel Arturo Gajardo Cooper (PUC)
13 - Kendry Vivas (PUCV)
06 - Rodolfo Gutiérrez-Romo (Universidad de Chile, CMM)
Abril
08 - Adrián Esparza
01 - Yuri Lima (Universidade Federal do Ceará, Brazil)
Marzo
25 - Gabriela Estevez (Universidade Federal Fluminense, Brazil)
18 - Marisa Cantarino (Universidade Estadual de Campinas, Brazil)
Calendario 2021
Diciembre
10 - Natalia Jurga (St. Andrews University, UK)
03 - Martin Leguil (Université de Picardie Jules Verne, France)
Noviembre
19 - Jaqueline Siqueira (UFRJ, Brazil)
12 - Davi Obata (Chicago University, USA)
Octubre
22 - Cristina Lizana (UFBA, Brazil)
15 - Adriana Sánchez (CIMPA-UCR, Costa Rica)
08 - Ignacio Huerta
01 - Lorenzo J. Díaz (PUC-Rio, Brazil)
Septiembre
10 - Pablo Barrientos (UFF, Brazil)
03 - Karina Marin (ICEx-UFMG, Brazil)
Agosto
27 - María Isabel Cortez (PUC, Chile)
Calendario 2020
Diciembre
16 - Paulina Cecchi (DIM-FCFM)
02 - Carlos Vásquez (PUCV)
Noviembre
25 - Nelda Jaque (UCh)
18 - Kendry Vivas (UCN)
11 - Hongming Nie
04 - Álvaro Bustos (UCh)
Octubre
28 - Katrin Gelfert (UFRJ)
21 - Paulo Varandas (Universidad de Porto)
14 - Rodrigo Bissacot (Sao Paulo)
07 - Erik Contreras (PUC)
Septiembre
30 - Rafael Alcaraz Barrera (Universidad Autónoma de San Luis Potosí)
16 - Jonathan Conejeros
09 - Felipe García-Ramos (Universidad Autónoma de San Luis de Potosí)
02 - Godofredo Iommi (PUC)
Agosto
26 - Radu Saghin (PUCV)
19 - Felipe Riquelme (PUCV)
Julio
24 - Matilde Martínez (Universidad de la República)
17 - Rafael Potrie (Universidad de la República)
Mayo
08 - Xavier Buff (Université Paul Sabatier)
Abril
24 - Yusheng Luo (Stony Brook)
Marzo
13 - Pablo Carrasco (UFMG)
Enero
17 - Alfredo Poirier (PUC Peru)/Sebastián Pérez (PUCV)
Calendario 2019
Diciembre
13 - Kamlesh Parwani (Eastern Illinois University)
Octubre
11 - Rogério Mol (Minas Gerais)
Septiembre
06 - Sylvain Bonnot (Sao Paulo)
Agosto
23 - Daniel Coronel (UAB)
09 - Regis Varao (Campinas)
02 - Andrés Navas (USACH)
Julio
26 - Juan Rivera-Letelier (Rochester)
Junio
28 - Eduardo Oregón-Reyes (University of California)
14 - Adrián Esparza (CIMAT)
14 - Aníbal Velozo (Yale University)
Mayo
31 - Salomón Rebollo (Universidad del Bío-Bío)
24 - Antti Käenmäki (University of Eastern Finland)
03 - Ángel Pardo (Universidad de Chile)
Abril
18 - Thomas Jordan (University of Bristol)
12 - Mónica Moreno (Cimat)
05 - Gabriela Estevez (USP)
Marzo
29 - Lucas Backes (UFRGS)
15 - John H. Hubbard (Cornell University)
Calendario 2018
Noviembre
16 - Sebastian Perez Opazo (U. de Porto, Portugal)
Octubre
05 - Ali Tahzibi (Universidade de São Paulo, Brasil)
05 - Martín Sambarino (Universidad de la República, Uruguay)
02 - Javier Camargo (Universidad Industrial de Santander, Colombia)
Septiembre
07 - Çagri Sert (ETH, Zürich)
Agosto
24 - Mike Todd (University of St. Andrews, UK)
23 - Alejandro Kocsard (Universidade Federal Fluminense, Brasil)
Julio
20 - Anibal Velozo (Princeton, USA)
06 - Renato Velozo (Pontificia Universidad Católica de Chile, Chile)
Junio
07 - Martin Andersson (Universidade Federal Fluminense, Brasil)
04 - Katrin Gelfert (Universidade Federal do Rio de Janeiro, Brasil)
04 - Lorenzo Diaz (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
Mayo
29 - Pierre Arnoux (Institut de Mathématique de Luminy, France)
04 - Dante Carrasco (Universidad del Bío Bío, Chile)
Abril
20 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
13 - Joel Saavedra (PUCV)
Marzo
28 - Pablo Carrasco (Universidade Federal de Minas Gerais, Brasil)
Enero
12 - Jaime San Martin (CMM, U. Chile)
05 - Juan Rivera-Letelier (University of Rochester, USA)
Calendario 2017
Noviembre
17 - Alexander Arbieto (Universidade Federal do Rio de Janeiro, Brasil)
03 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
Octubre
20 - Martin Andersson (Universidade Federal Fluminense, Brasil)
Septiembre
22 - Gabriel Nuñez (Universidad de la República, Uruguay)
15 - Alvaro Castañeda (Fac. de Ciencias, U. de Chile)
01 - Rodolfo Gutierrez (Université de Paris 7, Francia)
Agosto
25 - Yago Antolín (Universidad Autonoma de Madrid, España)
Mayo
26 - Alejandro Maass (Universidad de Chile, Chile)
19 - Enzo Fuentes (Pontificia Universidad Católica de Valparaíso, Chile)
12 - Tuomas Sahlsten (University of Bristol, UK)
Abril
21 - Arnaldo Nogueira (Aix-Marseille Université, Francia)
07 - Cristobal Rojas (Universidad Nacional Andrés Bello, Chile)
07 - Daniel Coronel (Universidad Nacional Andrés Bello, Chile)
Enero
20 - Luna Lomaco (Universidade de São Paulo, Brasil)
13 - Jiagang Yang (Universidade Federal Fluminense, Brasil)
06 - Pablo Carrasco (Universidade de São Paulo, Brasil)
06 - Sebastián Perez (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
Calendario 2016
Diciembre
16 - Sesión SD Suma
07 - Stefanie Hittmeyer (University of Auckland, New Zealand)
Noviembre
25 - Ryo Moore (Pontificia Universidad Católica de Chile, Chile)
18 - Felipe Riquelme (Pontificia Universidad Católica de Valparaíso, Chile)
Octubre
28 - Arnaud Meyroneinc (Instituto Venezolano de Investigaciones Científicas, Venezuela)
14 - Juan Alonso (Universidad de la República, Uruguay)
12 - Jana Rodriguez Hertz (Universidad de la República, Uruguay)
Septiembre
23 - Matthieu Arfeux (Pontificia Universidad Católica de Valparaíso, Chile)
16 - Mitsuhiro Shishikura (Kyoto University, Japan)
09 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
02 - Matthieu Arfeux (Pontifficia Universidad Católica Valparaíso, Chile)
Agosto
26 - Matthieu Arfeux (Pontificia Universidad Católica de Valparaíso, Chile)
19 - Mike Todd (University of St. Andrews, UK)
Junio
10 - Martin Andersson (Universidade Federal Fluminense, Brasil)
03 - Jairo Bochi (Pontificia Universidad Católica de Chile, Chile)
Mayo
27 - Enzo Fuentes (Pontificia Universidad Católica de Valparaíso, Chile)
20 - Felipe Riquelme (Université de Rennes 1, Francia)
20 - Kamlesh Parwani (Eastern Illinois University, USA)
13 - Enrique Pujals (IMPA, Brasil)
12 - Enrique Pujals (IMPA, Brasil)
06 - Mauricio Poletti (IMPA, Brasil)
Abril
29 - Carolina Canales (Université de Paris 11, France)
29 - Eleonora Catsigeras (Universidad de la República, Uruguay)
22 - Arnaldo Nogueira (Aix-Marseille Université, France)
08 - Sandro Vaienti (Université de Marseille, France)
01 - Thomas Jordan (University of Bristol, UK)
Calendario 2015
Diciembre
18 - Sebastián Herrero M. (Pontificia Universidad Católica de Chile, Chile)
11 - Nelda Jaque (Universidad Católica del Norte, Chile)
04 - Anderson Cruz (UFBA, Brazil)
Noviembre
20 - Jan Kiwi (Pontificia Universidad Católica de Chile, Chile)
Octubre
30 - Italo Cipriano (University of Warwick, UK)
23 - Mario Roldan (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
15 - Valparaiso's dynamics working days http://ima.ucv.cl/congreso/valparaiso-dynamics/
13 - Escuela Doctoral http://vescuela.cimfav.cl/
09 - Semana de la Matemática http://ima.ucv.cl/congreso/sm2015/
Septiembre
25 - Cristina Lizana (Universidad de los Andes, Venezuela)
Agosto
31 - Global dynamics beyond uniform hyperbolicity http://ima.ucv.cl/beyond/
14 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
07 - Matthieu Arfeux (Stony Brook University, USA)
Julio
31 - Sebastián Donoso (Universidad de de Chile - Université de Paris 11)
24 - Daniel Coronel (Universidad Nacional Andrés Bello, Chile)
10 - Edson Vargas (Universidade de São Paulo, Brasil)
03 - Sebastián Pérez, (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
Junio
12 - Sofia Trejo (Universidade de São Paulo, Brasil)
05 - Daniel Reem (ICMC, Universidade de Sao Paulo, Brasil)
Mayo
29 - Javier Solano (Universidade Federal Fluminense, Brasil)
15 - Juan Rivera-Letelier (Pontificia Universidad Católica de Chile, Chile).
08 - Sandro Vaienti (Centre de Physique Théorique, Université de Marseille, France)
Abril
24 - Rafael Ruggiero (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
17 - Cristian Ortiz (Universidade de São Paulo, Brasil)
17 - Kiran Parkhe (Technion Israel Institute of Technology, Israel)
17 - Kiran Parkhe (Technion Israel Institute of Technology, Israel))
10 - Liviana Palmisano (Impan, Polonia)
Marzo
20 - Mike Todd, (University of St. Andrews, UK)
13 - Raul Ures, (Universidad de la República, Uruguay)
Enero
16 - Krerley Oliveira (Universidade Federal de Alagoas, Brasil)
14 - Bernard Host (Université Paris-Est Marne-la-Vallée - France)
14 - Tomasz Doenarowicz (Wroclaw University of Technology, Poland)
13 - Bernard Host (Université Paris-Est Marne-la-Vallée - France)
12 - Bernard Host (Université Paris-Est Marne-la-Vallée - France)
09 - Martin Andersson (Universidade Federal Fluminense, Brasil)
08 - Chile-New Zealand Workshop on Dynamical Systems
07 - Chile-New Zealand Workshop on Dynamical Systems
06 - Chile-New Zealand Workshop on Dynamical Systems
Calendario 2014
Noviembre
28 - Kamlesh Parwani (Eastern Illinois University and Northwestern, USA)
21 - Alejandro Maass (Dim- U. de Chile)
14 - Jan Kiwi (Pontificia Universidad Católica de Chile, Chile)
07 - Javier Camargo (Universidad Industrial de Santander, Colombia)
Octubre
24 - Felipe Riquelme (Université de Rennes 1, Francia)
10 - Juan Rivera-Letelier (Pontificia Universidad Católica de Chile, Chile)
03 - Semana de la Matemática
Septiembre
26 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
05 - Fabián Contreras (Pontificia Universidad Católica de Valparaíso, Chile)
Agosto
29 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
08 - Juliana Xavier (Universidad de la República, Uruguay)
08 - Pablo Lessa (Universidad de la República, Uruguay)
Julio
25 - Álvaro Castañeda (F. Ciencias, U. de Chile)
Junio
27 - César Maldonado (CMM, Chile)
20 - Begoña Alarcón (Universidade Federal Fluminense, Brasil)
20 - Peter Veerman (Portland State University, USA)
06 - Jairo Bochi (Pontificia Universidad Católica de Chile, Chile)
Mayo
23 - Pablo Aguirre (Universidad Técnica Federico Santa María, Chile)
16 - (12 al 16) Curso PUCV, Valparaíso
16 - José Alves (Universidade do Porto, Portugal)
02 - Pierre Guiraud, (Universidad de Valparaíso, Chile)
Abril
25 - (21 al 25) Curso en UCN, Antofagasta
11 - José Alves (Universidade do Porto, Portugal)
04 - Zhihong Jeff Xia (Norwerstern University, USA)
Marzo
28 - (24 - 27) Curso en Universidad Austral, Valdivia
21 - Kamlesh Parwani (Eastern Illinois University and Northwestern, USA)
14 - Maria Isabel Cortes (Universidad de Santiago de Chile, Chile)
Enero
17 - Belmiro Galo (Universidade de São Paulo, Brasil)
10 - Daniel Coronel (Universidad Nacional Andrés Bello, Chile)
Calendario 2013
Diciembre
20 - Yuki Yayama (Universidad del Bio Bio, Chile)
13 - Fabian Belmonte
06 - Pablo Carrasco (Universidade de São Paulo, Brasil)
Noviembre
29 - Cristobal Rivas (Universidad de Santiago de Chile, Chile)
15 - Andrés Koropecki (Universidade Federal Fluminense, Brasil)
07 - Sebastian Pérez (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
Octubre
25 - Juan Rivera-Letelier (Pontificia Universidad Católica de Chile, Chile)
18 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
11 - Pablo Shmerklin (Universidad Torcuato Di Tella, Argentina)
04 - Semana de la Matemática
Septiembre
27 - Roberto Markarian (Universidad de la República, Uruguay)
27 - Romina Vicencio (Pontificia Universidad Católica de Valparaísos, Chile)
13 - Encuentro Ivan Szántó (Universidad Técnica Federico Santa María, Chile)
12 - Encuentro Ivan Szantó (Universidad Técnica Federico Santa María, Chile)
06 - Jairo Bochi (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
Agosto
30 - Martin Andersson (Universidade Feredal Fluminense,Brasil)
23 - Nicolae Strungaru (Macewan University,Canadá) y Rafael Potrie (Universidad de la República, Uruguay)
23 - Rafael Potrie (Universidad de la República, Uruguay)
16 - Andrés Navas (Universidad de Santiago de Chile, Chile)
Julio
26 - Martín Sambarino (Universidad de la República, Uruguay)
05 - Mike Todd (University of St. Andrews, UK)
Junio
14 - Fabian Contreras (University of Maryland, USA)
Mayo
17 - Katsutoshi Shinohara (University of Tokyo, Japón)
03 - Pierre Py (Université de Strasbourg, Francia)
Abril
05 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
Marzo
15 - Katrin Gelfert (Universidade Federal do Rio de Janeiro, Brasil)
15 - Matthieu Arfeux (Université de Toulouse 3, Francia)
Calendario 2012
Noviembre
30 - Felix Pogorzelski (University of Jena, Alemania)
23 - Yuri Ki (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
16 - Pablo Guarino (Universidade de São Paulo, Brasil)
09 - Pablo Carrasco (Instituto de Matemática Pura e Aplicada, Brasil)
Octubre
12 - Fabio Tal (Universidade de São Paulo, Brasil)
12 - Rodrigo Vargas (Universidad de Talca, Chile)
Septiembre
28 - Genly León Torres (Universidad Central Marta Abreu de Las Villas, Cuba)
14 - Michal Szostakiewicz (Uniwersytet Warszawski, Polonia)
07 - Ezequiel Maderna (Universidad de la República, Uruguay)
Agosto
24 - Martin Andersson (Universidade Federal Fluminense, Brasil)
10 - Joel Saavedra (Fis. Pontificia Universidad Católica de Valparaíso, Chile)
Julio
27 - Rolando J. Biscay Lirio (Universidad de Valparaíso, Chile)
13 - José Aliste (CMM-Universidad Andrés Bello, Chile)
Marzo
30 - Alfredo Poirier (Pontificia Universidad Católica del Perú, Perú)
16 - Daniel Coronel (Pontificia Universidad Católica de Chile, Chile)
09 - Mike Todd (University St Andrews, Escocia)
Enero
20 - Rodrigo Castro Marín (Universidad de Santiago de Chile, Chile)
17 - Krerley Oliveira (Universidade Federal de Alagoas, Brasil)
10 - Pablo Carrasco (IMPA, Brasil)
06 - Alma Armijo Averil (Universidade Federal do Rio de Janeiro, Brasil)
Calendario 2011
Diciembre
05 - Servet Martínez (CMM Universidad de Chile, Chile)
02 - Andy Hammerlind (IMPA, Brasil)
Noviembre
18 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
Junio
03 - Jonathan Conejeros (Pontificia Universidad Católica de Chile, Chile)
Mayo
27 - Mauricio Allendes Cerda (Pontificia Universidad Católica de Chile)
20 - Juan Rivera-Letelier (Pontificia Universidad Católica de Chile, Chile)
13 - Jean-Baptiste Bardet (Université de Rouen, Francia & Universidad de Chile, Chile)
06 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
Abril
15 - Pablo Aguirre (University of Bristol, UK)
08 - Ricardo Menares (Pontificia Universidad Católica de Chile, Chile)
Calendario 2010
Octubre
15 - Vitor Araujo (Universidade Federal do Rio de Janeiro, Brasil)
01 - Karl-Olof Lindahl (Linnaeus University, Suecia)
Septiembre
24 - Vilton Pinheiro (Universidade Federal da Bahía, Brasil)
10 - Rodrigo Abarzúa (Universidad de Santiago de Chile, Chile)
03 - Jose F. Alvez (Universidade do Porto, Portugal)
03 - Patricia Cirilo (IMPA, Brasil)
Agosto
27 - Vanderlei Horita (Universidade Estadual Paulista, Brasil)
Julio
30 - Leonora Castigeras (Universidad de la República, Uruguay)
09 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
02 - Ali Tahzibi (Universidade de São Paulo, Brasil)
Junio
04 - Henri Comman (Pontificia Universidad Católica de Valparaíso, Chile)
Mayo
14 - Cristian Ortiz (IMPA, Brasil)
07 - María Isabel Cortez (Universidad de Santiago de Chile, Chile)
Abril
30 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
23 - Álvaro Daniel Coronel (Pontificia Universidad Católica de Chile, Chile)
16 - Cristóbal Rivas (Universidad de Chile, Chile)
09 - Alejandr Kocsard (Universidade Federal Fluminense, Brasil)
Marzo
26 - Pierre Guiraud (Universidad de Valparaíso, Chile)
18 - José Ángel Rodríguez (Universidad de Oviedo, España)
12 - Stephane Attal (Université de Lyon 1, Francia)
Calendario 2009
Julio
03 - Eugenio Trucco (Pontificia Universidad Católica de Chile, Chile)
Junio
26 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
19 - Alejandro Maass (Universidad de Chile, Chile)
12 - Sergio Plaza (Universidad de Santiago de Chile, Chile)
05 - Feliks Przytycki (IMPAN, Polonia)
05 - Álvaro Castañeda (Universidad de Santiago de Chile, Chile)
Mayo
29 - Gerardo Honorato (Universidad de Santiago de Chile, Chile)
15 - Andrés Navas (Universidad de Santiago de Chile, Chile)
08 - Irene Inoquio (Universidad Católica del Norte, Chile)
Abril
24 - Rubén Hidalgo (Universidad Técnica Federico Santa María, Chile)
17 - Ronnie Pavlov (University of British Columbia, Canadá)
Calendario 2008
Diciembre
19 - Mónica García Ñustes (Instituto Venezolano de Investigaciones Científicas, Venezuela)
05 - Álvaro Castañeda (Universidad de Santiago de Chile, Chile)
Noviembre
28 - Gerardo Honorato (Universidad de Santiago de Chile, Chile)
21 - Christophe Dupont (Université de Paris 11, Francia)
14 - Eduardo Jorquera (Universidad de Chile, Chile)
Octubre
31 - Vitor Araujo (Universidade Federal do Rio de Janeiro, Brasil)
24 - María Isabel Cortez (Universidad de Santiago de Chile, Chile)
17 - Rafael Labarca (Universidad de Santiago de Chile, Chile)
Septiembre
26 - Mike Todd (Universidade do Porto, Portugal)
25 - Martín Sambarino (Universidad de la República, Uruguay)
12 - Juan Rivera-Letelier (Pontificia Universidad Católica de Chile, Chile)
12 - Richard Uzúa Luz (Universidad Católica del Norte, Chile)
05 - Amalia Pizarro (Universidad de Chile, Chile)
Agosto
28 - Marcelo Viana (IMPA, Brasil)
22 - Nuno Luzia (Instituto Superior Técnico de Lisboa, Portugal)
14 - Mariuz Urbanski (University of North Texas, USA)
08 - Jan Kiwi (Pontificia Universidad Católica de Chile, Chile)
Julio
24 - Fabián Contreras (Universidad Católica del Norte, Chile)
04 - Yuki Yayama (CMM-Universidad de Chile, Chile)
Junio
27 - Pierre Guiraud (Universidad de Valparaíso, Chile)
20 - Mario Ponce (Pontificia Universidad Católica de Chile, Chile)
13 - Martin Andersson (Pontifícia Universidade Católica do Rio de Janeiro, Brasil)
06 - Godofredo Iommi (Pontificia Universidad Católica de Chile, Chile)
Mayo
30 - Irene Inoquio (Universidad Católica del Norte, Chile)
23 - Fabián Belmonte (Universidad de Chile, Chile)
Próximo Seminario
TBA
Seminarios Anteriores 2024
Dinámica no autónoma generalizada a través de morfismos de grupoides
Néstor Jara Lagos
Universidad de Chile, Chile
Viernes 8 de Noviembre
14:30 hrs.
Sala IMA 2-2
En esta charla explico cómo extender las nociones de dinámica no autónoma a grupos arbitrarios, a través de morfismos de groupoides. Esto también presenta una generalización de los sistemas dinámicos clásicos y de las acciones de grupos. Introduzco la estructura de cotraslaciones, como un tipo específico de morfismo de groupoide, y establezco una correspondencia entre cotraslaciones y skew-products. Presentamos aplicaciones de las cotraslaciones a ecuaciones no autónomas, tanto en diferencias como diferenciales. También proporcionamos varios otros ejemplos en diferentes grupos. Finalmente, discutimos algunas propiedades algebraicas y analíticas de esta estructura.
Homoclinic classes of geodesic flows on rank 1 manifolds
Yuri Lima
Universidade Federal do Ceará, Brasil
Viernes 8 de Marzo
16:00 hrs.
Sala IMA 2-2
In a joint work with Mauricio Poletti, we prove that the homoclinic class of every hyperbolic periodic orbit of a geodesic flow over a rank 1 Riemannian manifold equals the unit tangent bundle. As an application, we give a proof using symbolic dynamics of the theorem of Knieper on the uniqueness of the measure of maximal entropy and theorems of Burns et al on the uniqueness of equilibrium states.
Seminarios Anteriores 2023
Continuity of center Lyapunov exponents
Karina Marín
Universidade Federal de Minas Gerais, Brasil.
Martes 19 de Diciembre
16:30 hrs
Sala Aula (IMA)
The continuity of Lyapunov exponents has been extensively studied in the context of linear cocycles. However, there are few theorems that provide information for the case of diffeomorphisms. In this talk, we will review some of the known results and explain the main difficulties that appear when trying to adapt the usual techniques to the study of center Lyapunov exponents of partially hyperbolic diffeomorphisms.
Casi-morfismos, casi-cociclos y formalismo termodinámico
Pablo Carrasco
Universidade Federal de Minas Gerais, Brasil.
Martes 19 de Diciembre
15:10 hrs
Sala Aula (IMA)
El objetivo de esta charla es explicar cómo un tipo particular de objeto geométrico (casi-morfismos y funciones de longitud) se encaja en el contexto abstracto de casi-cociclos. A partir de esto desarrollaremos una versión de formalismo termodinámico que nos permitirá reducir el estudio a cociclos reales (es decir, funciones). Por último (Cronos mediante) aplicaremos lo anterior para estudiar clases de cohomología de casi-morfismos. Los resultados a presentar son parte de un proyecto conjunto con Federico Rodríguez-Hert.
Entropía para Funciones Elípticas en el Toro
Gerardo Honorato
Universidad de Valparaíso, Chile.
Martes 19 de Diciembre
14:00 hrs
Sala Aula (IMA)
En esta charla mostraremos que las funciones elípticas que actúan sobre el toro pinchado tienen entropía infinita. Repasaremos brevemente la dinámica clásica de funciones racionales y veremos los aspectos más relevantes de la dinámica de funciones elípticas. Los dos mundos comparten muchas propiedades. Este trabajo es en conjunto con Mónica Moreno-Rocha (CIMAT-México) y Pancho Valenzuela (PUCV-Chile).
Diferenciabilidad del Hartman- Grobman no autónomo
Álvaro Castañeda
Universidad de Chile, Chile.
Viernes 24 de Noviembre
14:30 hrs
Sala 2-2 (IMA)
En 1973 K. Palmer establecio lo que actualmente se conoce como el Hartman-Grobman no autónomo. El autor construyó un homeomorfismo H que relaciona las soluciones de un sistema lineal con las soluciones de un sistema no lineal, el cual se describe como el lineal anterior mas una perturbación acotada. En esta charla revisaremos los resultados que se han obtenido, desde el 2015 en adelante, acerca de la diferenciabilidad de la aplicación H
Medidas invariantes y absolutamente continuas para transformaciones del intervalo
Nicolas Arévalo Hurtado
Pontificia Universidad Católica de Chile, Chile.
Viernes 10 de Noviembre
14:30 hrs
Sala 2-2 (IMA)
En esta charla repasaremos diferentes resultados que garantizan la existencia de medidas absolutamente continuas con respecto a Lebesgue de transformaciones monótonas a trozos en el intervalo unitario. Algunas aplicaciones serán presentadas. El objetivo final de la charla será mostrar resultados análogos de existencia respecto a medidas geométricas conformes de transformaciones que cumplen una noción de convexidad promedio en sus ramificaciones.
Ergodic averages of multiplicative actions and their applications.
Sebastián Donoso
Universidad de Chile, Chile.
Viernes 20 de Octubre
14:30 hrs
Sala 2-2 (IMA)
In this talk, we will review recent progress in the study of averages in a measure-preserving system where the acting group is considered with multiplication instead of addition (we will call them “multiplicative actions”). I will present recent work on multiplicative actions of the Gaussian integers and provide several applications in number theory. This is based on joint work with A. Le, J. Moreira and W. Sun.
Estados de equilibrio para endomorfismos Parcialmente Hiperbólicos
Carlos Álvarez Escorcia
Pontificia Universidad Catolica de Valparaíso, Chile.
Viernes 27 de Septiembre
14:30 hrs
Sala 2-2 (IMA)
En esta charla probaremos la existencia de estados de equilibrio para endomorfismos parcialmente hiperbólicos con centro unidimensional. Además, discutiremos sobre un escenario donde obtenemos ejemplos de endomorfismos intrínsecamente ergódicos. Este es un trabajo conjunto con Marisa Cantarino (Monash University).
Conexidad de acciones de Zd por difeomorfismosen dimension uno
Andrés Navas
Universidad De Santiago de Chile, Chile.
Viernes 07 de Julio
16:30 hrs
Sala 2-2 (IMA)
En esta charla abordare un teorema recientemente probado con Hélene Eynard-Bontemps (Inst. Fourier, Grenoble): el espacio de las acciones de Zd sobre variedades 1-dimensionales por difeomorfismos de clase C1+ac es conexo por arcos.
Geodesic currents and the space of metric structures on hyperbolic groups
Eduardo Reyes
Max Planck Institute for Mathematics, Bonn, Alemania.
Viernes 07 de Julio
15:30 hrs
Sala 2-2 (IMA)
Geodesic currents on hyperbolic groups were introduced by Bonahon, and for fundamental groups of closed negatively curved manifolds they can be seen as measures on the unit tangent bundle that are invariant under the geodesic flow. Via stable length functions, geodesic currents interact with other structures that are not necessarily Riemannian, such as random walks, Anosov representations, actions on trees and CAT(0) cube complexes, etc. In this talk, I will discuss joint work with Stephen Cantrell on the space of metric structures, a generalization of Teichmuller space that encodes all the aforementioned structures. In particular, I wil explain how the stable length functions of metric structures extend continuously to the space of currents, disproving a conjecture of Bonahon.
Representaciones del grupo de Higman
Cristóbal Rivas Espinosa
Universidad de Chile, Chile, Chile
Viernes 30 de Junio
15:30 hrs
Sala 2-2 (IMA)
El primer ejemplo de un grupo finitamente generado pero sin cocientes finitos es el grupo de Higman H. Este grupo tampoco admite representaciones lineales, pues los grupos de matrices finitamente generados siempre admiten muchos cocientes finitos. En esta charla discutiremos sobre representaciones no lineales de H y tambien sobre sus casi representaciones.
Espacios de mapas continuos a trozos
Alfredo Calderón Céspedes
Universidad Católica Silva Henríquez, Chile.
Viernes 28 de Abril
15:30 hrs
Sala 2-2
La posibilidad de describir ciertos fenómenos dinámicos depende fuertemente de la noción de proximidad que se considere sobre el espacio de sistemas. Bajo supuestos como continuidad y compacidad, la métrica uniforme suele ser apropiada para definir las perturbaciones del espacio y describir así fenómenos genéricos o estables. ¿Qué sucede en un contexto discontinuo? En esta charla exploramos algunas métricas sobre ciertos espacios de mapas
continuos a trozos y su utilidad en dinámica. Además, discutiremos la posibilidad de dotar con más estructura dichos espacios, obteniendo así a algunos aspectos geométricos interesantes.
Inestabilidad y Rigidez en dinámica polinomial no-arquimediana.
Jan Kiwi
PUC
Viernes 21 de Abril
16:00 hrs
Sala 2-2
En el contexto dinámica polinomial sobre los números complejos, polinomios cuyo conjunto de Julia es un Cantor, están en la clausura del “shift locus” gracias a resultados de Branner y Hubbard (1998), Qiu, Yin y Zhai (2006), Kozlovski y Van Strien (2006). Es decir, son aproximados por dinámicas hiperbólicas conjugadas al “full shift” en finitos símbolos. El objetivo de la charla es exponer un resultado análogo en el contexto de dinámica polinomial no-arquimediana.
Tangencias homoclínicas robustas vía ciclos heterodimensionales.
Sebastián Pérez
PUCV
Viernes 14 de Abril
16:00 hrs
Sala 2-2
En esta charla discutiremos algunos resultados relativos a sistemas dinámicos (diferenciables) no hiperbólicos. Ejemplos prototípicos de tales configuraciones son las tangencias homoclínicas y los ciclos heterodimensionales. Un resultado clásico debido a S. Newhouse afirma que la bifurcación de la tangencia homoclínica más ”simple” produce tangencias que “robustas”, es decir, que no pueden ser destruidas bajo pequeñas perturbaciones del sistema. En esta charla discutiré un resultado similar: comenzando con un ciclo heterodimensional “simple” envolviendo alguna intersección “crítica” generamos tangencias robustas después de bifurcar.
Una conjetura de Markus-Yamabe no uniforme:
Caso triangular via uniformización
Ignacio Huerta Navarro
Universidad de Chile
Viernes 24 de Marzo
16:00 hrs
Sala 2-2
En esta charla introduciremos una conjetura no autónoma no uniforme de Markus-Yamabe, un problema de estabilidad asintótica no uniforme para ecuaciones diferenciales no autónomas, cuya restricción al caso autónomo está relacionada a la clásica Conjetura de Markus-Yamabe.
Adicionalmente, se mostrara que la conjetura es verificada para sistemas unidimensionales, para cierto tipo de sistemas no lineales y para una familia de sistemas triangulares satisfaciendo hipótesis técnicas de acotamiento, concentrándonos mucho más en este último. Una herramienta esencial para llevar a cabo la demostración en el caso triangular es una condición
necesaria y suficiente que asegure la propiedad de dicotomía exponencial no uniforme para sistemas lineales en bloques triangular superior.
[1] Alvaro Castañeda, Ignacio Huerta, Gonzalo Robledo, A nonuniform Markus–Yamabe conjecture: Triangular case via uniformization, https://arxiv.org/abs/2210.01943
Seminarios Anteriores 2022
Equivalencia orbital, entropía y complejidad simbólica en subshifts minimales
Paulina Cecchi
Universidad de Chile
Viernes 11 de Noviembre
16:00 hrs
Sala 2-2
Un sistema minimal de Cantor es un sistema dinámico minimal en que el espacio de fase en un Cantor. Un subshift minimal es un caso particular de sistema minimal de Cantor. Dos sistemas minimales de Cantor se dicen orbitalmente equivalentes si existe un homeomorfismo entre los espacios de fase que envía órbitas en órbitas, y bajo algunas condiciones suplementarias, la equivalencia orbital se dice fuerte. En 1994, M. Boyle y D. Handelman probaron que cualquier sistema minimal de Cantor es fuertemente orbitalmente equivalente a un sistema de entropía topológica cero, mostrando de esta forma que la entropía topológica no es preservada por equivalencia orbital fuerte. En el caso de un subshift minimal, la entropía topológica corresponde a la tasa de crecimiento exponencial de una función asociada al subshift, llamada función de complejidad simbólica. En vista del resultado de Boyle y Handelman, es natural preguntarse de qué forma, en el caso de los subshifts, la función de complejidad simbólica restringe (o no) la clase de equivalencia orbital fuerte. En esta charla abordaremos esta pregunta y revisaremos algunos resultados asociados. Trabajo conjunto con Sebastián Donoso.
Grupos soficos y formalismo termodinámico
Sebastián Barbieri
Universidad de Santiago de Chile
Viernes 07 de Octubre
16:00 hrs
Sala 2-2
Dado un subshift $X$ y una función continua $f\colon X \to \mathbb{R}$ podemos definir dos nociones con significado físico. La primera es la de medida de Gibbs, que captura la idea de equilibrio local con el entorno. La segunda es la noción de medida de equilibrio, que captura la idea de maximizar el desorden globalmente. Un teorema clásico de Lanford y Ruelle dice que si $f$ es suficientemente regular y $X$ es un subshift de tipo finito en $\mathbb{Z}^d$, entonces las medidas de equilibrio son automáticamente medidas de Gibbs.
En esta charla les hablaré sobre una generalización de éste resultado para una clase muy amplia de grupos que se denominan “sóficos”. Comenzaremos con una introducción amable a esta clase de grupos y su teoría de entropía y finalizaremos con algunas ideas que juegan un rol importante en la prueba del resultado.
Endomorfismos no uniformemente hiperbólicos
Radu Saghin
Pontificia Universidad Católica de Valparaíso, Chile
Viernes 30 de Septiembre
16:00 hrs
Sala 2-2
Voy a presentar ejemplos de endomorfismos del toro que son C^1 robustamente no uniformemente hiperbólicos. Además los ejemplos son establemente ergódicos, y los exponentes de Lyapunov son continuos con respecto al endomorfismo en la topología C^1.
Conexidad del espacio de acciones de Z^d en variedades unidimensionales
Andrés Navas
Universidad de Santiago de Chile
Viernes 23 de Septiembre
16:00 hrs
Sala Aula
En esta charla se discutirán dos resultados:
Sobre sistemas saturados
Diego Sanhueza
Viernes 09 de Septiembre
16:00 hrs
Sala 2-2
Para un sistema dinámico (X, S), estudiamos la entropía topológica del conjunto de los puntos genéricos, Gμ(S), respecto de una medida S−invariante μ. En este escenario, R. Bowen obtiene
un célebre resultado el cual dice que h(S, Gμ(S)) ≤ hμ(S) para toda medida S-invariante y la
igualdad se cumple si μ es ergódica, donde h(S, Gμ(S)) es la entropía topológica de Gμ(S). En
este seminario, mostraremos un resultado análogo para flujos y daremos condiciones suficientes
para que un sistema dinámico sea saturado (i.e., h(S, Gμ(S)) = hμ(S) para toda medida S-
invariante μ).
Este es un trabajo en conjunto con María Jose Pacífico (UFRJ).
Equidistribución de órbitas de números racionales
Godofredo Iommi
PUC, Chile
Viernes 02 de Septiembre
16:00 hrs
Sala 2-2, Edificio Rubén Castro
Todo número racional posee una expansión finita en fracciones continuas. Utilizando un teorema de grandes desvíos para flujos de suspension sobre shifts en alfabetos numerables, probar e que las órbitas de los números racionales con respecto a la transformación de Gauss se equidistribuyen con respecto a la medida de Gauss. Si el tiempo permite, probare un resultado análogo en dimensión superior para la transformación de Jacobi-Perron.
Este es trabajo conjunto con Felipe Riquelme y Aníbal Velozo.
Cover times in dynamical systems
Mike Todd
University of St Andrews
Viernes 26 de Agosto
16:00 hrs
Sala Aula
What is the expected number of iterates of a point needed for a plot of these iterates to approximate the attractor of the dynamical system up to a given scale delta (i.e., the orbit will have visited a delta-neighbourhood of every point in the attractor)? This question has analogues in random walks on graphs and Markov chains and can be seen as a recurrence problem. I’ll present joint work with Natalia Jurga (St Andrews) where we estimate the expectation for this problem as a function of delta for some classes of interval maps using ideas from Hitting Time Statistics, permutations and inducing.
How to construct non-hyperbolic ergodic measures with positive entropy
Katrin Gelfert
Universidade Federal do Rio de Janeiro
Viernes 12 de Agosto
16:00 hrs.
Sala Aula
We aim to understand “the amount of non-hyperbolicity” in a diffeomorphism. For that we pursue the path considering simplified, but still extremely rich, simpler systems: partially hyperbolic diffeomorphisms with one-dimensional center, skew products, step skew products with circle fibers, step skew products induced by SL(2, R) matrix co-cycles. Under suitable hypotheses that there are, roughly speaking, some circle fiber maps which have some hyperbolicity (say, Morse-Smale diffeomorphisms) and some which are non-hyperbolic (say, conjugate to an irrational rotation), we construct ergodic measures with zero fiber Lyapunov exponent and positive metric entropy. In a work by Gorodetski, Ilyashenko, Kleptsyn, and Nalski, a technique of concatenating periodic orbits was proposed
to construct non-hyperbolic ergodic measurements. After Kwietniak and Łacka, this technique always results in measures with zero entropy. I will explain how to modify these techniques to produce measures with positive en-
tropy. Very naively, the periodic orbits are replaced by horseshoes. To overcome the main difficulty of non-uniform convergence of Birkhoff means, we implement a probabilistic approach. This is a joint work with L.J.Díaz and M.Rams.
Superposición de hiperbolicidades: aspectos ergódicos y bifurcaciones
Lorenzo J Díaz
PUC de Rio de Janeiro
Viernes 12 de Agosto
17:00 hrs.
Sala Aula
Una motivación inicial es presentar modelos simples de dinámicas que describen dinámicas asociadas a desdoblamientos de ciclos heterodimensionales (pero no solamente). En el caso de las tangencias homoclínicas
existe una dinámica límite descrita por la familia cuadrática. En el caso de los ciclos heterodimensionales la “dinámica límite” es dada por un producto torcido (skew product) donde la base es (parte de) un shift y la dinámica fibrada funciones del intervalo (con dominios superpuestos). Una propiedad fundamental es que la dinámica fibrada presenta regiones de contracción y expansión con “superposiciones”. El caso más interesante ocurre cuando la dinámica “generada” no es hiperbólica. El caso más sencillo ocurre cuando estas funciones son
cóncavas, cuando no hay concavidad poco se puede decir de las dinámicas y existen gran variedad de casos (básicamente, casi todo puede pasar). Nos concentraremos, como es de esperar, en el caso mas sencillo. Estudiaremos las dinámicas asociadas a este
tipo de productos torcidos con énfasis en la descripción del espacio de medidas ergódicas del sistema.
Trabajo en conjunto con K. Gelfert (UFRJ, Brasil) y M. Rams (IMPAN, Polonia).
Los campos estrella en variedades de dimension tres son multi-singular hiperbólicos
Nelda Jaque
Universidade de Chile
Viernes 10 de Junio
16:00 hrs.
Sala Aula
La coexistencia de singularidades y órbitas regulares en conjuntos transitivos por cadena ha sido un obstáculo
importante para comprender la naturaleza hiperbólica de la dinámica robusta. Debido a que campos vectoriales
sin singularidades con todas las órbitas periódicas fuertemente hiperbólicas (flujos estrella), son hiperbólicos, pero no lo son en general. Se dedico mucho esfuerzo para comprender si se pueden caracterizar por alguna estructura hiperbólica más débil. De hecho, Bonatti y da Luz caracterizan un conjunto abierto y denso de campos
estrellas por hiperbolicidad multi-singular. En esta charla, generalizamos el ultimo resultado mencionado a la hipótesis mínima. Y probaremos que todos los flujos estrella tridimensionales son multi-singulares hiperbólicos.
(Trabajo en conjunto a Adriana da Luz y Jennyffer Bohorquez).
Ergodic and Geometric Aspects of
(Nonuniformly) Sectional Hyperbolic Systems
Luciana Salgado
Universidade Federal do Rio de Janeiro
Viernes 03 de Junio
16:00 hrs.
Zoom ID 972 921 1944
Password DP2022
In 2009, the notion of nonuniformly sectional hyperbolic set was introduced, joint with A. Arbieto, as an extension to singular ows of the notion of nonuniform hyperbolicity for dieomorphisms. We proved a C1-generic relation between nonuniformly sectional hyperbolicity and sectional hyperbolicity. In 2019, I introduced a broadest notion of (uniform) sectional hyperbolicity and sectional Lyapunov exponents, by considering sectional expansion of any dimension between 2 and the full dimension of the central bundle. Then, several characterizations of these notions were given, in particular, an ergodic characterization of domination property, by using Lyapunov functions. In this talk, I am going to talk about these notions of (nonuniformly) sectional hyperbolicity recently made, and some related results and derivated theory of it will be presented.
References:
1. Arbieto, A., Salgado, L., On critical orbits and sectional hyperbolicity of
the nonwandering set for ows. J. Di. Eq., 250 (2011), 29272939.
2. Salgado, L., Singular hyperbolicity and Sectional Lyapunov exponents of
various orders. Proc. of Amer. Math. Soc., v.147, n.2, p. 735749. DOI:
https://doi.org/10.1090/proc/14254. 2019.
Relative pressure functions and their equilibrium states
Yuki Yayama
Universidad del Bío-Bío
Viernes 27 de Mayo
16:00 hrs.
Zoom ID 972 921 1944
Password DP2022
For a subshift $(X,\sigma_X)$ and a subadditive sequence $\mathcal{F}=\{\log f_n\}_{n=1}^{\infty}$ on $X$, we study equivalent conditions for the existence of $h\in C(X)$ such that $\lim_{n\to \infty}(1/{n})\int \log f_n d \mu=\int h d \mu$ for every invariant measure $\mu$ on $X$. For this purpose, we first we study necessary and sufficient conditions for $\mathcal{F}$ to be an asymptotically additive sequence in terms of certain properties for periodic points.
For a factor map $\pi: X\to Y$, where $(X, \sigma_X)$ is an irreducible shift of finite type and $(Y, \sigma_Y)$ is a subshift, applying our results and the results obtained by Cuneo on asymptotically additive sequences, we study the existence of $h$ with regard to a subadditive sequence associated to a relative pressure function.
This leads to a characterization of the existence of a certain type of continuous compensation function for a factor map between subshifts.As an application, we study the projection $\pi\mu$ of an invariant weak Gibbs measure $\mu$ for a continuous function on an irreducible shift of finite type.
Irreductibilidad de curvas de polinomios cúbicos con punto crítico prefijo
Daniel Gajardo
PUC
Viernes 20 de Mayo
16:00 hrs.
Sala Aula
Para cada , estudiaremos la irreductibilidad de la curva algebraica de polinomios cúbicos con un punto crítico marcado prefijo, con preperiodo . Xavier Buff, Adam Epstein y Sarah Koch probaron (2018) que tales curvas son irreductibles, utilizando argumentos algebraicos. En este caso, demostraremos el mismo resultado adaptando las técnicas geométricas utilizadas por Matthieu Arfeux y Jan Kiwi (2020) para probar la irreductibilidad de las curvas de polinomios cúbicos con punto crítico periódico.
Atractores ASH
Kendry Vivas
PUCV
Viernes 13 de Mayo
16:00 hrs.
Sala Aula
La noción de hiperbolicidad seccional asintótica fue introducida recientemente con el propósito de contar con una definición general de hiperbolicidad en la que el atractor de Lorenz contractivo sea un ejemplo representativo de estos sistemas. La propiedad ASH significa que cada punto fuera de la variedad estable de las singularidades posee tiempos hiperbólicos arbitrariamente grandes. En esta charla presentaremos algunos problemas relacionados con la expansividad, la existencia de medidas físicas y la existencia de clases homoclinicas de atractores que satisfacen este tipo de hiperbolicidad.
El grupo de flujo de los diferenciales cuadráticos enraizados
Rodolfo Gutierrez-Romo
Universidad de Chile
Viernes 06 de Mayo
16:00 hrs.
Sala Aula
Dado un diferencial cuadrático en una superficie de Riemann, decimos que está enraizado si está dotado de una elección de vector tangente unitario horizontal. El espacio de los diferenciales enraizados es una variedad que está naturalmente estratificada por el multiconjunto de los órdenes de los ceros de los diferenciales. El flujo de Teichmüller es un flujo con propiedades dinámicas interesantes que se define en esta variedad, y preserva la estratificación.
En este contexto, el grupo de flujo G ⊆ π_1(C) de una componente conexa C de un estrato de diferenciales cuadráticos enraizados es un grupo que codifica en qué medida la dinámica del flujo de Teichmüller es capaz de “detectar” la topología de C. El resultado principal de esta charla es que G = π_1(C); la demostración está basada en métodos topológicos, combinatoriales y dinámicos. Este hecho tiene importantes consecuencias dinámicas, como que el espectro de Lyapunov del flujo de Teichmüller en C sea simple (es decir, no hay exponentes de Lyapunov repetidos).
Este es un trabajo en conjunto con Mark Bell, Vincent Delecroix, Vaibhav Gadre y Saul Schleimer.
Oscillating wandering domains in $p$-adic transcendental dynamics
Adrián Esparza
Viernes 08 de Abril
16:00 hrs.
Sala Aula
Renormalization and hyperbolicity in one-dimensional dynamics
Gabriela Estevez
Universidade Federal Fluminense, Brazil
Viernes 25 de Marzo
16:00 hrs.
Zoom ID 972 921 1944
Password DP2022
In this talk we will discuss some examples in one-dimensional dynamics where the Renormal- ization operator is hyperbolic. We will focus on the case of circle maps with ”inflexive” critical points. This is a joint work with Michael Yampolsky.
Endomorphisms on surfaces: regularity of foliations and rigidity
Marisa Cantarino
Universidade Estadual de Campinas, Brazil
Viernes 18 de Marzo
16:00 hrs.
Zoom ID 972 921 1944
Password DP2022
We introduce with examples the uniformly hyperbolic dynamics for the non-invertible case and its main properties. We present (in collaboration with R. Varão) a result that characterizes on surfaces the smooth conjugacy between a special Anosov endomorphism and its linearization in terms of the regularity of stable and unstable foliations. This regularity is absolute continuity in a uniformly bounded formulation, which we characterize (in collaboration with R. Varão and S. Targino)using holonomies.
Seminarios Anteriores 2021
Cover times for dynamical systems
Natalia Jurga
University of St Andrews, UK
Viernes 10 de Diciembre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
Given a dynamical system $latex f:I \to I$ we study the asymptotic expected behaviour of the cover time: the rate at which orbits become dense in the state space $latex I$. We will see how this can be studied through the lens of dynamical systems with holes and the spectral theory of the transfer operators associated to these systems. This is joint work with Mike Todd.
Rigidity of u-Gibbs measures for perturbations of conservative Anosov diffeomorphisms of the three-torus
Martin Leguil
Université de Picardie Jules Verne, Francia
Viernes 03 de Diciembre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
Let f be a C^2 diffeomorphism of the three-torus, with a partially hyperbolic splitting E^s+E^c+E^u into three line bundles such that f is uniformly expanding along the center. In this talk we will discuss the links between u-Gibbs measures (invariant measures whose disintegrations along the strong unstable direction are absolutely continuous with respect to Lebesgue) and physical measures of f, which are of particular importance to capture the asymptotic statistical behaviour of most orbits. In a joint work with Sébastien Alvarez, Davi Obata and Bruno Santiago, we show the following dichotomy in the case where f is C^1-close to a conservative Anosov diffeomorphism: either the strong bundles E^s, E^u are jointly integrable, or any u-Gibbs measure of f is SRB; in particular, this shows uniqueness of u-Gibbs measures. Our proof utilizes the exponential drift argument of Benoist-Quint, and borrows some ideas from other pioneering works on measure rigidity in different contexts such as the papers of Eskin-Mirzakhani, Brown-Rodriguez Hertz, Eskin-Lindenstrauss.
Equilibrium States for a class of non-uniformly hyperbolic maps
Jaqueline Siqueira
UFRJ, Brasil
Viernes 19 de Noviembre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
We consider a wide family of non-uniformly hyperbolic maps and hyperbolic potentials and prove that the unique equilibrium state associated to each element of the family is given by the eigenmeasure and the eigen function of the transfer operator (both having the spectral radius as an eigenvalue). We prove that the transfer operator has the spectral gap property in the space of Hölder continuous observables. From this we derive that the unique equilibrium state satisfies a central limit theorem and that it has exponential decay of correlations. Moreover, we prove joint continuity and analyticity with respect to the potential. (Based on various joint works with S. Afonso, J. Alves, V. Ramos).
Open sets of partially hyperbolic systems having a unique SRB measure
Davi Obata
Chicago University, USA
Viernes 12 de Noviembre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
For a dynamical system, a physical measure is an ergodic invariant measure that captures the asymptotic statistical behavior of the orbits of a set with positive Lebesgue measure. A natural question in the theory is to know when such measures exist.
It is expected that a “typical” system with enough hyperbolicity (such as partial hyperbolicity) should have such measures. A special type of physical measure is the so-called hyperbolic SRB (Sinai-Ruelle-Bowen) measure. Since the 70`s the study of SRB measures has been a very active topic of research.
In this talk, we will see some new examples of open sets of partially hyperbolic systems with two dimensional centers having a unique SRB measure. One of the key features for these examples is a rigidity result for a special type of measure (the so-called u-Gibbs measure) which allows us to conclude the existence of the SRB measures.
Robust transitivity and domination for endomorphisms displaying critical points
Cristina Lizana Araneda
UFBA, Brasil
Viernes 22 de octubre
16:00 hrs.
Zoom ID 938 9370 0838
Password 781237
We show that robustly transitive endomorphisms of a closed manifold must have a non-trivial dominated splitting or be a local diffeomorphism. This allows us to get some topological obstructions for the existence of robustly transitive endomorphisms. To obtain the result we must understand the structure of the kernel of the differential and the recurrence to the critical set of the endomorphism after perturbation. This is a joint work with R. Potrie, E. Pujals and W. Ranter.
Exponentes de Lyapunov para medidas de soporte no compacto
Adriana Sánchez
CIMPA-UCR, Costa Rica
Viernes 15 de octubre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
Recientemente, Bocker-Viana mostraron que los exponentes de Lyapunov para medidas de soporte compacto en GL(2, R) dependen continuamente de la medida. En un trabajo en conjunto con Marcelo Viana analizamos el caso de las medidas con soporte no compacto.
En esta charla veremos que los exponentes de Lyapunov son semi-continuos superiormente con respecto a la topología de Wasserstein, pero no con respecto a la topología débil*. Aún mas, mostramos que los exponentes no son continuos respecto a la topología de Wasserstein.
Abordando la conjetura de Markus-Yamabe y sus posibles consecuencias desde una perspectiva no autónoma y no uniforme
Ignacio Huerta Navarro
Universidad de Chile, Chile
Viernes 08 de octubre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
G. Fournier y M. Matelli señalaron la existencia de una relación entre la Conjetura Jacobiana y el problema de estabilidad global de sistemas dinámicos autónomos continuos y discretos en dimensión finita, también conocido como la Conjetura de Markus-Yamabe.
Muchos trabajos se han desarrollado en torno a la conjetura de Markus-Yamabe, mayormente en el mundo autónomo. Para dar el paso al mundo no autónomo, debemos fijarnos en el tipo de hiperbolicidad, teoría espectral asociada y el tipo de estabilidad que nos permita plantear apropiadamente una versión de esta conjetura, distinguiendo herramientas que sean adecuadas para el contexto no autónomo. Cabe destacar que en este trabajo, nos concentramos en una hiperbolicidad y estabilidad de tipo no uniforme.
El nivel cero de los exponentes de Lyapunov de sistemas parcialmente hiperbólicos
Lorenzo J. Díaz
PUC-Rio, Brasil
Viernes 01 de octubre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
Cinemática
Pablo Barrientos
UFF, Brasil
Viernes 10 de septiembre
16:00 hrs.
Zoom ID 879 2818 1719
Password 205046
Cuando lo que interesa no es la dinámica sino el movimiento.
Continuity of Lyapunov exponents for locally constant cocycles
Karina Marin
UFMG, Brasil
Viernes 03 de septiembre
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
In this talk, we will discuss the continuity of the Lyapunov exponents in the Hölder topology for locally constant SL(2,R)-valued cocycles over a Bernoulli shift. In particular, we prove that the discontinuity example of Bocker-Viana is not typical among cocycles that have upper Lyapunov exponent small enough. This is a joint work with Catalina Freijo (ULisboa).
Sobre algunos elementos del grupo de automorfismos de árboles, desde una perspectiva dinámica
María Isabel Cortez
PUC, Chile
Viernes 27 de agosto
16:00 hrs.
Zoom ID 972 921 1944
Password DP2021
En esta charla abordaremos algunos resultados respecto a una clase especial de automorfismos (”settled elements”) de p-árboles, con p > 1 primo. Estos automorfismos pueden ser caracterizados, desde un punto de vista dinámico, como aquellos tales que casi todas sus componentes minimales (vistos como homeomorfismos sobre
el conjunto infinito de caminos) son abiertas-cerradas . Este trabajo tiene su motivación en la conjetura de Boston y Jones sobre representación arbórea de polinomios.
Trabajo en conjunto con Olga Lukina (University of Vienna).
Edición Especial Dinámica Porteña
El próximo 11 de diciembre celebraremos los 50 años de Carlos Vásquez con una jornada especial de nuestro seminario.
Speakers:
José Alves (CMUP)
Martin Andersson (UFF)
Lorenzo J. Díaz (PUC-Rio)
Jana Rodríguez-Hertz (SUSTech)
Cristina Lizana (UFBA)
Enrique Pujals (CUNY)
Ali Tahzibi (ICMC USP)
Comité Organizador:
Sebastián Pérez
Felipe Riquelme
Radu Saghin
Más información sobre el evento y la forma de participar aquí.
Seminarios Anteriores 2020
Equivalencia orbital fuerte y complejidad factorial en subshifts
Paulina Cecchi
DIM-FCFM, Chile
Miércoles 16 de diciembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Linear response formula for the topological entropy at the time one map of a geodesic flow on a manifold of negative curvature
Carlos Vásquez
PUCV, Chile
Miércoles 02 de diciembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Notas sobre expansividad positiva para semiflujos continuos
Nelda Jaque
Universidad de Chile
Miércoles 25 de noviembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Conjuntos asintóticamenteseccional-hiperbólicos
Kendry Vivas Ferrer
Universidad Católica del Norte
Miércoles 18 de noviembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
La noción de conjunto Asintóticamente Seccional-Hiperbólico fue introducida en [1] por C. Morales y B. San Martín. La principal característica que presentan estos conjuntos es que cualquier punto fuera de las variedades estables de sus singularidades (las cuales son hiperbólicas) poseen tiempos hiperbólicos arbitrariamente grandes. Ejemplos de sistemas que verifican esta clase de hiperbolicidad son la Herradura Singular Contractiva [1], el atractor exhibido en [2] y el atractor de Rovella [3]. En esta charla se presentarán algunas propiedades dinámicas que satisfacen estos sistemas, así como algunos problemas por resolver dentro de esta teoría.
Referencias
[1] C. Morales and B. San Martín. Contracting Singular Horseshoe. Nonlinearity 30 (2017), 4208-4219.
[2] B. San Martín and Vivas Kendry J. Asymptotically sectional-hyperbolic attractors, Discrete & Continuous Dynamical Systems – A 39 (2019), 4057-4071.
[3] San Martín B. and Vivas K. The Rovella attractor is asymptotically sectional-hyperbolic, Nonlinearity 33 (2020), 3036-3049.
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Boundedness of hyperboliccomponents in moduli space
Hongming Nie
Hebrew University of Jerusalem / PUC, Israel / Chile
Miércoles 11 de noviembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Automorphisms and extended symmetries of number-theoretic positive entropy shifts
Álvaro Bustos
UCh, Chile
Miércoles 04 de noviembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Heterodimensionality of skew-products with concave fiber maps
Katrin Gelfert
UFRJ, Brasil
Miércoles 28 de octubre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Variational principles and equilibrium states for (semi)group actions
Paulo Varandas
UFBA, Brasil
Miércoles 21 de octubre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Phase Transitions in Statistical Mechanics, Countable Markov Shifts, and Operator Algebras
Rodrigo Bissacot
USP, Brasil
Miércoles 14 de octubre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Acerca de la derivada de una conjugación entre dos transformaciones de tipo Gauss
Erik Contreras
PUC, Chile
Miércoles 07 de octubre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
El programa de Blanchard y el mundo Lexicográfico
Rafael Alcaraz Barrera
UASLP, México
Miércoles 30 de septiembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Elementos de distorsión en el grupo de difeomorfismos de la esfera
Jonathan Conejeros
USACH, Chile
Miércoles 16 de septiembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Modelos topológicos de sistemas loosely Bernoulli con entropía cero
Felipe García-Ramos
UASLP, México
Miércoles 09 de septiembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
Para esto usaremos la pseudo métrica de Feldman-Katok. Algunos ejemplos que caen en esta categoría son horociclos, sistemas de rango finito y distales. Trabajo en conjunto con Dominik Kwietniak.
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Dimension theory for continued fractions
Godofredo Iommi
PUC, Chile
Miércoles 02 de septiembre
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Derivadas de valores propios y exponentes de Lyapunov
Radu Saghin
PUCV, Chile
Miércoles 26 de agosto
15:30 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Intermediate entropy property: old and new
Felipe Riquelme
PUCV, Chile
Miércoles 19 de agosto
15:45 hrs.
Zoom ID 950 3770 0646, Password 595507
*** Dado el contexto de pandemia mundial, los seminarios Dinámica Porteña y de Sistemas Dinámicos de Santiago han decidido realizar sus seminarios en conjunto durante el segundo semestre 2020 ***
Dinámica del flujo horocíclico foliado
Matilde Martínez
Universidad de la República, Uruguay
Viernes 24 de julio
16:00 hrs.
Zoom ID 210 992 9348
Hacia una clasificación topológica de parcialmente hiperbólicos en dimensión 3
Rafael Potrie
Universidad de la República, Uruguay
Viernes 17 de julio
16:00 hrs.
Zoom ID 210 992 9348
Irreducibility in holomorphic dynamics
Xavier Buff
Université Paul Sabatier, France
Viernes 08 de mayo
16:00 hrs.
Zoom
Classification of hyperbolic rational maps with finitely many connected Fatou sets
Yusheng Luo
Stony Brook University, USA
Viernes 24 de abril
16:00 hrs.
Zoom
Paseos aleatorios como sistemas dinámicos
Pablo Carrasco
UFMG, Brasil
Viernes 13 de marzo
16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
En esta charla (muy) introductoria pretendo explicar un problema clásico de probabilidad, los paseos aleatorios, desde el punto de vista de un dinamicista.
Veremos como los sistemas dinámicos aleatorios pueden entenderse como paseos aleatorios y discutiremos aplicaciones de teoría ergódica para ellos.
La charla está pensada para estudiantes (¡de dinámica!), y no requiere conocimientos previos de la teoría de paseos al azar.
Estabilización de una clase de ciclos heterodimensionales
Sebastián Pérez
Pontificia Universidad Católica de Valparaíso, Chile
Viernes 17 de enero
17:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Un difeomorfismo f tiene un ciclo (heterodimensional) si existen conjuntos hiperbólicos (transitivos) de índices diferentes (dimensión del fibrado inestable) cuyas variedades invariantes se intersectan cíclicamente. El ciclo de f es Cr-robusto si toda pequeña Cr-perturbación de f tiene un ciclo asociado a las continuaciones de estos conjuntos hiperbólicos. Si el ciclo de f es definido por un par de sillas hiperbólicas decimos que este ciclo puede ser Cr-estabilizado si toda Cr-vecindad de f contiene difeomorfismos con un ciclo Cr-robusto asociado a conjuntos hiperbólicos que contienen las continuaciones de las sillas iniciales.
En esta charla discutimos la Cr-estabilización de una clase de ciclos en dimensión 3 que envuelven intersecciones tangenciales entre sus variedades invariantes.
Esta charla es basada en un trabajo en colaboración con Lorenzo J. Díaz (PUC-Rio).
Continuous functions and measures in polynomial Julia sets
Alfredo Poirier
Pontificia Universidad Católica del Perú, Perú
Viernes 17 de enero
16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
We give a dynamical decomposition of continuous functions defined in polynomial filled Julia sets (this works at
least in the case where it agrees with the Julia set). As a consequence, we work a similar decomposition for
measures.
Seminarios anteriores 2019
Invitation to the flexibility program
Kamlesh Parwani
Eastern Illinois University, USA
Viernes 13 de diciembre 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
We discuss major results in this program and present several open problems.
Separatrices of real analytic vector fields in dimensions two and three
Rogério Mol
Universidade Federal de Minas Gerais, Brasil
Viernes 11 de octubre 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Let $X$ be a germ of real analytic vector field at $(\mathbb{R}^{n},0)$, $n \geq 2$. A \emph{separatriz} is a real formal curve invariant by $X$. In any dimension, there are examples of vector fields without separatrices. This is the case, for instance, of center-focus type vector fields at $(\mathbb{R}^{2},0)$. In this lecture, we will present, for vector fields with isolated singularity in dimensions $n = 2$ and $3$, sufficient conditions for the existence of separatrices. In dimension two, in the family of \emph{topological real generalized curves} — i.e. vector fields without topological saddle-nodes in their desingularizations — a vector field $X$ has a separatrix provided that either its \emph{algebraic multiplicity} $\nu_{0}(X)$ or its \emph{Milnor number} $\mu_{0}(X)$ is even. This generalizes a result by J.-J. Risler (2001). In dimension three, we prove that a vector field that is tangent to the levels of a non-constant germ of real analytic function — i.e. $X$ has a real analytic \emph{first integral} — admits a separatrix. In both cases, the proof relies on techniques of desingularization and indices of vector fields. We also give examples showing that the results are optimal, in the sense that we cannot assure the existence of analytic separatrices.
The part in dimension two is a joint work with my Ph.D. student E. Cabrera. The part in dimension three is a joint work with F. Sanz (Universidad de Valladolid – Spain).
Hénon mappings with biholomorphic escaping sets
Sylvain Bonnot
University of São Paulo, Brasil
Viernes 06 de septiembre 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
For any complex Hénon map, the universal cover of the forward escaping set $U^{+}$ is biholomorphic to $\D \times \C$, where $\D$ is the unit disc. The vertical foliation by copies of $\C$ descends to the escaping set itself and makes it a rather rigid object. In this talk we give evidence of this rigidity by showing that the analytic structure of the escaping set essentially characterizes the Hénon map, up to some ambiguity which increases with the degree of the map (joint work with R. Radu and R. Tanase from University of Toronto).
Estados de Gibbs geométricos con decaimiento lento de correlaciones
Daniel Coronel
Pontificia Universidad Católica de Chile, Chile
Viernes 23 de agosto 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
En esta charla estudiaremos las transiciones de fase para la función presión geométrica para parámetros Collet-Echmann en la familia cuádratica. En particular, nos enfocaremos en las propiedades estadísticas de los estados de equilibrio en la transición de fase. Es conocido que antes de la transición de fase los estados de equilibrio para el potencial geométrico tienen decaimiento exponencial de correlaciones. También se sabe que en la transición de fase hay a lo más un estado de equilibrio y después de la transición de fase no hay estados de equilibrio. Mostraremos que en los casos donde existe un estado de equilibrio en la transición de fase es posible realizar distintos tipos de decaimiento subexponencial de correlaciones.
Measure rigidity for some group action
Régis Varão
Universidade Estadual de Campinas, Brasil
Viernes 09 de agosto 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Assume a group G acts on a space in such a way that its action preserves some metric defined on each leaf (orbit of the action). We are able to fully describe the ergodic measure of these actions in terms of the disintegration on the leaves. In fact we obtain a dichotomy, either the disintegration is regular (means to be a full Hausdorff measure) or the disintegration is “pathological” (some atomic disintegration).
Reference: G. Ponce, R. Varão, Measure rigidity for leafwise weakly rigid actions, arXiv:1812.00057, 2019.
Distorsión asintótica de difeomorfismos unidimensionales
Andrés Navas
Universidad de Santiago de Chile, Chile
Viernes 02 de agosto 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Definimos la distorsión asintótica de un difeomorfismo como la estabilización de la variación de la derivada. Discutiremos 3 resultados:
– Para difeomorfismos de clase C2 del círculo con número de rotación irracional, este número es nulo.
– Para difeomorfismos del intervalo sin puntos fijos hiperbólicos, este número es nulo si y solo si el invariante de Mather asociado es trivial.
– La nulidad del invariante de Mather es equivalente a la posibilidad de conjugar el difeomorfismo en aplicaciones que aproximan isometrías.
Si el tiempo lo permite, mostraremos una aplicación de estas ideas al problema de la conexidad por arcos del espacio de difeomorfismos que conmutan.
Dinámica compleja y el modelo de exclusión en el árbol de Cayley
Juan Rivera-Letelier
University of Rochester, USA
Viernes 26 de julio 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Una descripción del modelo de exclusión en un árbol regular infinito, y sus conexiones con la dinámica compleja y los conjuntos de independencia. La charla se centrará en el comportamiento de la función presión en la transición de fase. Este es un trabajo en colaboración con Martin Sombra.
The avalanch principle and negative curvature
Eduardo Oregón
University of California, USA
Viernes 28 de junio 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
In 2001, M. Goldstein and W. Schlag introduced the Avalanche Principle, a quantitative sufficient condition for the operator norm $\|A_N\cdots A_1\|$ of a product of matrices in $\mathrm{SL}_2(\mathbb{R})$, to being similar to the product $\|AN\|\cdots \|A_1\|$. Since then several refinements and generalizations have appeared in the literature. In this talk I will present a reformulation of this principle in terms of the geometry of the hyperbolic plane, and show how to extend it to metric spaces of negative curvature.
Equidistribution of closed geodesics on negatively curved manifolds
Aníbal Velozo
Yale University, USA
Viernes 14 de junio 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
In this talk I will explain how to obtain equidistribution results for closed geodesics on non-compact negatively curved manifolds based on large deviation estimates. It turns out that the main obstacle to obtain equidistribution is the escape of mass, and that this can be handled by previous works related to the entropy at infinity of the geodesic flow. If time permits analogies with countable Markov shifts will be discussed.
Convergencia Parabólica y familias de dominios de Baker
Adrián Esparza
CIMAT, México
Viernes 14 de junio 17:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Es bien sabido que los dominios parabólico y los dominios de Baker son inestables dinámicamente. En esta charla trataremos un caso particular de convergencia tanto para dominios parabólicos como para dominios de Baker. En especial, construimos una sucesión de funciones parabólicas (las cuales pueden ser racionales) que convergen (dinámicamente) a una función meromorfa con familias de dominios de Baker.
Ciclos límites en sistemas polinomiales de Liénard perturbados
Salomón Rebollo
Universidad del Bío-Bío, Chile
Viernes 31 de mayo 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Consideramos sistemas polinomiales de Liénard generalizados que provienen de perturbaciones polinomiales de segundo orden del centro lineal. Para estos sistemas, encontramos un subconjunto genérico (abierto y denso) en el espacio de perturbaciones de grado 2l, con l≥1, de tal manera que cada sistema Liénard generalizado perturbado asociado tiene como máximo 2l-1 ciclos límite medios.
Assouad dimension of planar self-affine sets
Antti Käenmäki
University of Eastern Finland, Finland
Viernes 24 de mayo 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
We consider planar self-affine sets X satisfying the strong separation condition and the projection condition. We show that any two points of X, which are generic with respect to a self-affine measure having simple Lyapunov spectrum, share the same collection of tangent sets. We also calculate the Assouad dimension of X and show that it is minimal for the conformal Assouad dimension. The talk is based on joint work with Balázs Bárány and Eino Rossi.
Counting problem on infinite periodic billiards and translation surfaces
Ángel Pardo
Universidad de Chile, Chile
Viernes 03 de mayo 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
The Gauss circle problem consists in counting the number of integer points of bounded length in the plane. This problem is equivalent to counting the number of closed geodesics of bounded length on a flat two dimensional torus or, periodic trajectories, in a square billiard table.
Many counting problems in dynamical systems have been inspired by this problem. For 30 years, the experts try to understand the asymptotic behavior of closed geodesics in translation surfaces and periodic trajectories on rational billiards. (Polygonal billiards yield translation surfaces naturally through an unfolding procedure.) H. Masur proved that this number has quadratic growth rate.
In these talk, we will study the counting problem on infinite periodic rational billiards and translation surfaces.
The first example and motivation is the wind-tree model, a Ζ2-periodic billiard model. In the classical setting, we place identical rectangular obstacles in the plane at each integer point; we play billiard on the complement.
I will first present some quite precise results that are only valid for the wind-tree model (and some natural generalizations) and then, a general result which is valid for a.e. infinite periodic translation surfaces that uses completely different techniques: a dynamical analogous, for the algebraic hull of a cocycle, to strong and super-strong approximation on algebraic groups.
Self-affine sets and multifractal analysis
Thomas Jordan
University of Bristol, UK
Jueves 18 de abril 11:45 hrs. sala 2-2. Instituto de Matemática, PUCV
There is an old result of Besicovitch which gives the Hausdorff dimension of subsets of the interval described by frequencies of 0s in the binary expansion. This can be thought of as one of the first multifractal results. We will describe this result and show how it can be put in the context of self-similar sets. We’ll then introduce some theory of self-affine sets and describe a generalisation to self-affine sets. The work which is new is joint with Balazs Barany, Antti Kaenmaki and Michal Rams.
Anillos de Herman: reseña y resultados recientes
Mónica Moreno Rocha
Centro de Investigación en Matemáticas, México
Viernes 12 de abril 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Consideremos el sistema dinámico definido por la iteración de una función racional sobre la esfera de Riemann. Las componentes conexas máximas donde los iterados forman una familia normal son conocidas como componentes de Fatou. Las componentes periódicas se clasifican en cinco tipos: cuencas súperatractoras, atractoras y parabólicas, discos de Siegel y anillos de Herman. A diferencia de las otras componentes, los anillos de Herman no estan asociados a órbitas periódicas, por lo que es un problema difícil determinar cuando una función racional exhibe un ciclo de anillos de Herman.
En esta charla revisaremos algunos de los resultados iniciales por Micheal Herman y Mitsuhiro Shishikura que dieron lugar a los primeros ejemplos de anillos de Herman en la dinámica racional, luego discutiremos algunas de las extensiones de estos resultados para funciones transcendentes enteras y meromorfas. Concluiremos con algunos problemas abiertos y el progreso obtenido sobre anillos de Herman en el ámbito de funciones elípticas y la dinámica no-arquimediana.
Renormalizationof multicritical circle maps
Gabriela Estevez
Universidade de São Paulo, Brasil.
Viernes 05 de abril 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
We study C³ orientation preserving circle homeomorphisms with irrational rotation number and non-flat critical points. By Yoccoz, two of these maps with same irrational rotation are topologically conjugate. In this talk, we define the Renormalization operator of this kind of maps and assuming some properties of this operator we prove that the conjugacy is a C1+α diffeomorphism. This result is valid for a total Lebesgue measure set of irrational rotation numbers. This is a joint work with Pablo Guarino (Universidade Federal Fluminense, Brazil).
Continuity of Lyapunov exponents
Lucas Backes
Universidade Federal do Rio Grande do Sul, Brasil.
Viernes 29 de marzo 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
We will give an overview of some recent results about continuity of Lyapunov exponents for linear cocycles and present some interesting problems related to this theory.
Constructing pseudo-Anosov homeomorphisms
John H. Hubbard
Cornell University, EEUU.
Viernes 15 de marzo 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
Let S be a compact surface, and f:S->S a pseudo-Anosov homeomorphism. I will explain a way of decomposing S into rectangles, whose sizes are entries of an eigenvector for a certain Perron matrix.
Conversely, the data is encoded in an Ordered block Permutation (OBP). I will explain what there are, and give necessary and sufficient conditions for an OBP to define a pseudo-Anosov homeomorphism. The conditions are completely combinatorial and easy to implement on the computer; new have found the 6000 “first” pseudo-Anosov homeomorphisms. This is a joint work with Rafiqi and Schang.
Seminarios anteriores 2018
Estados de equilibrio para una clase de skew-products
Sebastian Pérez Opazo
Universidad de Porto, Portugal.
Viernes 16 de noviembre 16:00 hrs. sala 2-2. Instituto de Matemática, PUCV
En esta charla exhibimos estados de equilibrios únicos para una cierta clase (grande) de skew products y potenciales continuos envolviendo condiciones Holder. Estos resultados se aplican en particular, para los ejemplos clásicos no hiperbólicos de Abraham-Smale y Shub . Si el tiempo alcanza discutiremos la estabilidad estadística de estos estados. Este es un trabajo en colaboración con Maria Carvalho.
Accesibilidad en parcialmente isotópicos a Anosov con central bidimensional
Martín Sambarino
Universidad de la República, Uruguay.
Viernes 05 de octubre 17:10 hrs. sala 1-2.
Mostraremos que C^r genericamente los difeomorfismos parcialmente hiperbolicos que son isotópicos a un Anosov irreducible (a través de una isotopía de parciamente hiperbólicos con central bidimensional) son accesibles. Este es un trabajo con Luis P. Piñeyrúa.
Measures of maximal entropy for diffeomorphisms close to geodesic flow
Ali Tahzibi
Universidade de São Paulo, Brasil.
Viernes 05 de octubre15:40 hrs. sala 1-2.
In a joint work with J. Buzzi and T. Fisher we study the construction of Margulis-Bowen measures for diffeomorphisms close to geodesic flow of surfaces with negative curvature. We prove a dichotomy on the measures of maximal entropy in terms of their center Lyapunov exponent.
Equicontinuidad en dendritas
Javier Camargo
Universidad Industrial de Santander, Colombia.
Martes 02 de octubre, 17:30 hrs. sala 2-2.
Un continuo es un espacio métrico compacto conexo y diferente de vacío. Dado un continuo X, la familia 2^X de todos los cerrados no vacíos de X, dotada con la métrica de Hausdorff, es un continuo. Consideremos una función continua f:X -> X definida en un continuo X. Naturalmente podemos definir la función g_f :X->2^X por g_f (x) = g(x, f),para cada x en 2^X. Bruckner y Ceder mostraron que en el caso particular que X = [0, 1], son equivalentes: equicontinudad de f, continuidad de g_f , conexidad de Fix(f^2) y, para cada x en X, g(x, f) = G(x, f).
Una dendrita es un continuo localmente conexo que no contiene una curva cerrada simple. Es claro que [0, 1] es una dendrita. Una pregunta natural es: ¿para qué espacios podemos reemplazar el intervalo cerrado [0, 1], y se sigan cumpliendo las relaciones descritas en el resultado de Bruckner y Ceder? En esta charla estudiaremos algunos aspectos relacionados con esta pregunta cuando el espacio es una dendrita.
Random products of matrices and the joint spectrum
Çagri Sert
ETH, Zürich
Viernes 07 de septiembre, 16:00 hrs. sala 2-2.
We will start by surveying classical results of Furstenberg, Kesten, Guivarc’h, Le Page, Bougerol, Benoist-Quint and others, on random products of matrices such as the noncommutative law of large numbers, properties of Lyapunov exponents, central limit theorem, large deviations etc. In a second part, we will make connections with the recently introduced object called the joint spectrum. (In part, joint with Emmanuel Breuillard).
Phase transitions and limit laws
Mike Todd
University of St. Andrews, UK
Viernes 24 de agosto, 16:00 hrs. sala 2-2.
The ‘statistics’ of a dynamical system is the collection of statistical limit laws it satisfies. This starts with Birkhoff’s Ergodic Theorem, which is about averages of some observable along
orbits: this is a pointwise result, for typical points for a given invariant measure. Then we can look for forms of Central Limit Theorem, Large Deviations and so on: these are about how
averages fluctuate, globally, with respect to the invariant measure.
In this talk I’ll show how the form of the ‘pressure function’ for a dynamical system determines its statistical limit laws. This is particularly interesting when the system has slow mixing properties, or, even more extreme, in the null recurrent case (where the relevant invariant measure is infinite). I’ll start by introducing these ideas for simple interval maps with nice Gibbs measures and then indicate how this generalises. This is joint work with Henk Bruin and Dalia Terhesiu.
Cociclos sobre dinámicas hiperbólicas, exponentes de Lyapunov y aplicaciones
Alejandro Kocsard
Universidade Federal Fluminense, Brasil
Jueves 23 de agosto, 17:30 hrs. sala 2-2.
Las órbitas periódicas de los sistemas uniformemente hiperbólicos concentran gran parte de la información dinámica de los mismos. De esta forma, muchas veces es posible estudiar diversas propiedades de cociclos sobre estos sistemas (e.g. exponentes de Lyapunov) observando tan solo lo que sucede sobre las órbitas periódicas.
The space of invariant probability measures of a countable Markov shift
Anibal Velozo
Princeton, USA
Viernes 20 de julio, 16:00 hrs. sala 2-2.
K. Sigmund proved that the space of invariant probability measures of a subshift of finite type (endowed with the weak-* topology) is affine homeomorphic to the Poulsen simplex. In this talk I will describe the space of invariant probability measures in the non-compact case, as well as some applications. This is joint work with G. Iommi.
Caracterización de hiperbolicidad uniforme para cociclos fiber-bunched.
Renato Velozo
Pontificia Universidad Católica de Chile
Viernes 06 de julio, 16:00 hrs. sala 2-2.
Durante esta charla probaré una caracterización de hiperbolicidad uniforme para cociclos fiberbunched. Más específicamente, probaré que la existencia de un gap uniforme entre los exponentes de Lyapunov de un cociclo fiber-bunched a valores en SL(2,R) definido sobre un subshift de tipo finito o un difeomorfismo Anosov implica hiperbolicidad uniforme. Además, presentare la construcción de un cociclo Hölder continuo el cual tiene gap uniforme entre sus exponentes de Lyapunov pero no es uniformemente hiperbólico.
Sistemas dinámicos con comportamiento histórico
Martin Andersson
Universidade Federal Fluminense, Brasil
Jueves 07 de junio, 17:30 hrs. sala 2-1.
En esta charla presentamos algunos ejemplos de familias de sistemas dinámicos cuyas promedios de Birkhoff son divergentes para conjuntos grandes de puntos iniciales, lo que llamamos de comportamiento históico. Probaremos un teorema obtenido en colaboración con Flávio Abdenur que dice que homeomorfismos locales C0 genéricos de grado mayor que uno en el círculo tienen comportamiento histórico.
Sesión Especial 10 años
Exceptional sets for nonuniformly hyperbolic maps
Katrin Gelfert
Universidade Federal do Rio de Janeiro, Brasil
Lunes 04 de junio, 16:00 hrs. sala 2-2.
The study of so-called exceptional sets goes back to the work of Jarnik-Besicovitch who showed that the Hausdorff dimension of the set of badly approximable numbers on the real line is 1. Seen in a more general context, given a continuous map of a compact metric space and some subset A, an A-exceptional set is defined to be the set of points whose orbit does not accumulate at A. We study the ”size” of such sets in terms of their Hausdorff dimension and topological entropy. Here we consider a quite general context of C1+” maps with sufficient hyperbolicity. If the Hausdorff dimension of A is smaller than the dynamical dimension of the system then the Hausdorff dimension and the topological entropy of the A-exceptional set both are large. This is joint work with S. Campos.
Medidas ergódicas no hiperbólicas
Lorenzo Díaz
PUC- Rio, Brasil
Lunes 04 de junio, 17:00 hrs., sala Aula.
Discutiremos y presentaremos algunos métodos para construir las medidas en el título en diversos contextos no-hiperbólicos: productos torcidos, clases homoclínicas, difeomorfismos robustamente transitivos.
The Gauss measure for continued fractions : some geometric, symbolic and arithmetic interpretations.
Pierre Arnoux
Institut de Mathématique de Luminy, Francia
Martes 29 de mayo, 14:30 hrs., sala 2-2.
In a 1812 letter to Legendre, Gauss explains that a ”very simple computation” shows that the images of the Lebesgue measure by the continued fraction map converges to the measure
1/log(2) dx/(1+x). Nobody knows how he did it. We are proposing a heuristic method which allows to recover this result as the fixed point of an application, and gives also explicit results
for other exotic continued fractions. On the way, we will show various interpretations of this problem, which allow various generalizations.
Entropía Topológica y Medible para Sistemas Dinámicos Multivaluados
Dante Carrasco
Universidad del Bío-Bío.
Viernes 04 de mayo, 16:00 hrs., sala Aula.
Presentaremos una noción de entropía topológica para sistemas dinámicos multivaluados. Se usará la misma idea de conjuntos generadores y separadores para definir tal entropía con respecto a una semi-métrica inducida. Sin embargo, se mostrarán que cada una de esta entropía topológica conserva algunas de las propiedades básicas que se conocen como en el caso clásico. Además, discutiremos sobre una cota inferior de la entropía métrica en relación a la tasa de la expansión logarítmica de una aplicación multivaluada y a la dimensión inferior en medida.
Este trabajo es en conjunto con C. Morales y R. Metzger.
Una aproximación geométrica a la ecuación cohomológica
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 20 de abril, 16:00 hrs., sala 2-2.
Estudiaremos la posibilidad de resolver la ecuación cohomológica, que aparece como la ecuación lineal asociada a muchos fenómenos dinámicos. Exploraremos una aproximación geométrica al problema, la que resuelve la ecuación como consecuencia de soluciones conocidas para problemas similares en espacios más simples.
Vida y trabajo de un genio singular
Joel Saavedra
Pontificia Universidad Católica de Valparaíso.
Viernes 13 de abril, 16:00 hrs., sala Aula.
El 14 de marzo murió el científico británico Stephen Hawking, famoso por su trabajo teórico en los agujeros negros y la relatividad general. Hay pocas personas que no conocen su nombre por su divulgación científica que despierta la imaginación, y pocos físicos teóricos de energías altas que no buscaron la inspiración en sus ideas grandes. En esta charla presentaremos las ideas más desafiantes de su trabajo. Una de ellas trata unificar, a través de los agujeros negros, las dos piedras bases de la física moderna: la gravedad y los fenómenos a gran escala, con la teoría cuántica, que abarca las partículas subatómicas. También, su investigación fue fundamental para entender cómo el Big-Bang podría haber sido el comienzo del universo. Les invitamos compartir con nosotros una mirada a la vida y trabajo de Stephen Hawking.
Entropía en la clase de isotopía de mapas hiperbólicos
Pablo Carrasco
Universidade Federal de Minas Gerais, Brasil.
Miércoles 28 de marzo, 16:00 hrs., sala 203, facultad de ingeniería UV.
Una pregunta natural es la siguiente: dada una clase de isotopía [f], ¿Cuál es el representante más “simple” de la clase? El objetivo de esta charla es discutir el caso cuando f es Anosov, y trabajamos dentro del mundo de los sistemas parcialmente hiperbólicos.
Este es un trabajo conjunto con C. Lizana, E. Pujals y C. Vásquez.
Avances en matrices de tipo M y sus inversas
Jaime San Martín
CMM, Universidad de Chile.
Viernes 12 de enero, 16:00 hrs., sala 2-2.
En esta charla mostraremos los avances obtenidos en el problema de las inversas de matrices tipo M. Veremos como este problema se relaciona con las cadenas de Markov y estudiaremos más de cerca una clase de matrices llamadas ultramétricas. También veremos como el álgebra de Wang permite estudiar estas matrices en el caso simétrico.
Este es un trabajo en colaboración con Daniel Stefankovic.
Polinomio de independencia, función de partición y dinámica compleja
Juan Rivera-Letelier
University of Rochester, USA
Viernes 5 de enero, 16:00 hrs., sala 2-2
El polinomio de independencia es uno de los polinomios de grafos más estudiados en ciencias de la computación. En mecánica estadística, este polinomio se interpreta como la función partición del modelo de gas en el grafo. Recientemente Peters y Regts resolvieron una conjetura de Sokal sobre la ausencia de ceros complejos cercanos a un cierto intervalo real, interpretando los ceros en términos de dinámica compleja. Después de introducir el polinomio de independencia y explicar su interpretación en mecánica estadística, la charla se centrará en exhibir un contraejemplo a la conjetura de Peters y Regts sobre la región libre de ceros.
Este es un trabajo en colaboración con Daniel Stefankovic.
Seminarios anteriores 2017
Transitivity and entropy of the continuum hyperspace
Alexander Arbieto
Universidade Federal do Rio de Janeiro, Brasil.
Viernes 17 de noviembre, 16:00 hrs., sala 214, Facultad de Ingeniería, Universidad de Valparaíso.
The continuum hyperspace of a compact metric space is the space of its non-empty connected and compact subsets. Any dynamics in the base space induces a dynamic in the continuum hyperspace. In this talk, we study the entropy and transitivity properties of this dynamics. Joint work with Jennyffer Smith.
Formalismo termodinámico para la transformación de Jacobi-Perron
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 03 de noviembre, 16:00 hrs., sala 2-2.
En esta charla discutiremos cómo el formalismo casi aditivo en espacios no compactos, desarrollado en conjunto con Y.Yayama, permite estudiar propiedades diofantinas de aproximaciones simultáneas.
Estabilidad estadística en dinámica parcialmente hiperbólica
Martin Andersson
Universidade Federal de Fluminense, Brasil.
Viernes 20 de octubre, 16:00 hrs., sala 2-2.
En esta charla presentamos el concepto de estabilidad estadística y examinamos pruebas de este fenómeno en dos tipos de sistemas parcialmente hiperbólicos, los “predominantemente contractores” y los “predominantemente expansores”. Explicamos por qué el segundo tipo es mucho más difícil y daremos las nuevas herramientas que utilizamos para probar estabilidad estadística en este caso.
La conjetura de Hanna Neumann
Yago Antolín
Universidad Autónoma de Madrid, España.
Viernes 25 de agosto, 16:00 hrs., sala 2-2.
La conjetura de Hanna Neumann tiene su origen en los años 50 y recientemente, en 2011, fue resuelta por Igor Mineyev y por Joel Friedman de manera independiente.
Una tercera solución, de Andrei Jaikin-Zapirian apareció algo más tarde. La conjetura pregunta cuál es el rango máximo de la intersección de dos subgrupos de un grupo libre.
En esta charla veremos que calcular el rango de una intersección de subgrupos de un grupo libre es algo elemental y explicaré que herramientas extra son necesarias para lograr probar la conjetura.
Wandering intervals in affine extensions of self-similar interval exchange maps: the cubic Arnoux–Yoccoz map
Alejandro Maass
Dim, Universidad de Chile.
Viernes 26 de mayo, 16:00 hrs., sala 2-2.
In this talk, we discuss sufficient conditions on a self-similar interval exchange map, whose renormalization matrix has complex eigenvalues of modulus greater than one, for the existence of affine interval exchange maps with wandering intervals that are semi-conjugate with it. These conditions are based on the algebraic properties of the complex eigenvalues and the complex fractals built from the natural substitution emerging from self-similarity. We show that the cubic Arnoux–Yoccoz interval exchange map satisfies these conditions.
Foliaciones Hölder genéricas
Enzo Fuentes
Pontificia Universidad Católica de Valparaíso.
Viernes 19 de mayo, 16:00 hrs., sala 2-2.
En esta charla, veremos el ejemplo de un espacio de foliaciones de (con una cierta topología) que genéricamente no son absolutamente continuas, es más, las medidas condicionales definidas por la desintegración de Rokhlin son medidas de Dirac. Este tipo de foliaciones son motivadas por las que aparecen en sistemas hiperbólicos y parcialmente hiperbólicos, en donde sabemos que si el difeomorfismo es de clase , las foliaciones estable e inestable son absolutamente continuas, pero este resultado indicaría que si consideramos un difeomorfismo donde las foliaciones no tienen regularidad adicional, genéricamente las foliaciones no son absolutamente continuas, como por ejemplo, existen conjuntos abiertos de difeomorfismos parcialmente hiperbólicos de clase , con en donde su foliación central no es absolutamente continua, y también hay ejemplos de difeomorfismos de Anosov de clase en donde las foliaciones estable e intestable no son absolutamente continuas, por lo que podemos esperar que en estos 2 casos genéricamente las foliaciones son patológicas.
Quantum ergodicity and limit multiplicities.
Tuomas Sahlsten
University of Bristol, UK.
Viernes 12 de mayo, 16:00 hrs., sala 2-2
We will give an introduction to the topic of “quantum ergodicity” and review the history and current challenges of the problem. The quantum ergodicity theorem states that on Riemannian surfaces with an ergodic geodesic flow, most eigenfunctions of the Laplacian equidistribute spatially in the large eigenvalue limit. In this talk, we will present an alternative equidistribution theorem for eigenfunctions where the eigenvalues stay bounded and we take instead sequences of compact hyperbolic surfaces that become large in, say, volume. Thus the result combines quantum ergodicity with the theory of limit multiplicities in spectral theory (after DeGeorge and Wallach).
The approach is motivated by the recent works of Anantharaman, Brooks, Le Masson, and Lindenstrauss on eigenvectors of the discrete Laplacian on regular graphs, and the holomorphic form analogues by Nelson, Pitale and Saha. In the dynamics side of the proof we require the exponential mixing structure of the geodesic flow on hyperbolic surfaces, in particular a quantitative mean ergodic theorem by Nevo.
This is a joint work with Etienne Le Masson (Bristol).
Rotation number of interval contracted rotations.
Arnaldo Nogueira
Aix-Marseille Université, Francia.
Viernes 21 de abril , 16:00 hrs., sala 2-2
Let , and . We call contracted rotation the interval map . Once is fixed, we are interested in the dynamics of the one-parameter family , where runs on the unit interval . Any contracted rotation has a rotation number which describes the dynamical behavior of .
In the talk we include an application of contracted rotations which motivates an analysis of the numerical relation between the parameters and . In certain cases, this relation is related to the so called Hecke-Mahler type series. It also takes us to some questions about the dynamics of the map .
Based on a joint work with Michel Laurent and Mark Pollicott.
No calculabilidad del locus de bifurcación para una familia de polinomios complejos a un parámetro.
Daniel Coronel
Universidad Nacional Andrés Bello.
Viernes 07 de abril, 17:00 hrs., sala 2-2.
En esta charla mostraremos la existencia de números calculables para los cuales el locus de bifurcación de la familia no es calculable. La demostración se basa en que ciertas regiones de locus de conexidad de estas familias son cuasi-conformes a conjuntos de Julia llenos de las aplicaciones cuadráticas de la formas , y que existen ejemplos de este tipo con conjuntos de Julia no calculables. En la charla revisaremos estos resultados y mostraremos que la correspondencia entre estos conjuntos es calculable en la frontera.
Atractores computacionalmente intratables en la familia cuadrática real.
Cristóbal Rojas
Universidad Nacional Andrés Bello.
Viernes 07 de abril, 16:00 hrs., sala 2-2.
En esta charla se mostrará la existencia de funciones en la familia cuadrática real cuyos atractores son computacionalmente intratables. Esta es la primera clase natural que se conoce de este tipo de ejemplos. En la charla introduciremos conceptos básicos de la teoría de la calculabilidad, y algunas nociones de las teorías de implosión parabólica y renormalización, necesarias para la construcción de los ejemplos.
The Mandelbrot set and its satellite copies
Luna Lomonaco
Universidad de São Paulo, Brasil.
Viernes 20 de enero, 16:00 hrs., sala 2-2.
For a polynomial on the Riemann sphere, infinity is a (super) attracting fixed point, and the filled Julia set is the set of points with bounded orbit. Consider the quadratic family . The Mandelbrot set is the set of parameters such that the filled Julia set of is connected. Douady and Hubbard, using renormalization, proved the existence of homeomorphic copies of inside of , which can be primitive (if, roughly speaking, they have a cusp) or satellite (if they don’t). They conjectured that the primitive copies of are quasiconformal homeomorphic to , and that the satellite ones are quasiconformal homeomorphic to outside any small neighbourhood of the root. These results are now theorems due to Lyubich. The satellite copies are not quasiconformal homeomorphic to , but are they mutually quasiconformally homeomorphic? In a joint work with C. Petersen we prove that this question, which has been open for about 20 years, has in general a negative answer.
Invariance principle and rigidity of high entropy measures
Jiagang Yang
Universidad Federal Fluminense , Brasil.
Viernes 13 de enero, 16:00 hrs., sala 2-2.
This is a joint work with Ali Tahzibi.
A deep analysis of Lyapunov exponents of stationary sequence of matrices going back to Furstenberg, for more general linear cocycles by Ledrappier and generalized to the context of non-linear cocycles by Avila and Viana gives an invariance principle for invariant measures with vanishing central exponents. In this paper we give a new criterium formulated in terms of entropy for the invariance principle and in particular obtain a sim- pler proof for some of the known invariance principle results. As a byproduct, we study ergodic measures of partially hyperbolic diffeomorphisms whose center foliation is 1- dimensional and forms a circle bundle. We show that for any such diffeomorphism which is accessible, weak hyperbolicity of ergodic measures of high entropy implies that the system itself is of rotation type.
-estabilización de ciclos no transversales.
Sebastián Pérez-Opazo
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Viernes 06 de enero, 16:00 hrs., sala 2-2.
Un difeomorfismo tiene un ciclo (heterodimensional) si existen conjuntos hiperbólicos (transitivos) con índices diferentes (dimensión del fibrado inestable) cuyas variedades invariantes se intersectan cíclicamente. El ciclo de es -robusto si toda pequeña -perturbación de tiene un ciclo asociado a las continuaciones de estos conjuntos hiperbólicos.
Si el ciclo de es definido por un par de sillas hiperbólicas decimos que este ciclo puede ser -estabilizado si toda -vecindad de contiene difeomorfismos con un ciclo robusto asociado a conjuntos hiperbólicos que contienen las continuaciones de estas sillas.
Un ciclo entre sillas es no transversal si sus intersecciones cíclicas no son transversales.
En esta charla discutimos la -estabilización de ciclos no transversales en el caso tridimensional.
Sistemas no-uniformemente hiperbólicos sin splitting dominado.
Pablo Carrasco
ICMC-USP, Brasil.
Viernes 06 de enero, 17:00 hrs., sala 2-2.
En esta charla voy a presentar un método general para producir ejemplos de sistemas (conservativos) no-uniformemente hiperbólicos tales que el splitting correspondiente a los sub-espacios de Lyapunov estable e inestable no es dominado. Estos ejemplos tienen medida física, y de hecho este fenómeno es robusto en la topología C2.
Parte interesante de la construcción es que permite atacar ejemplos concretos, y no requiere perturbaciones iniciales para lograr ergodicidad. Los argumentos son una generalización de un trabajo anterior con P. Berger.
Seminarios anteriores 2016
Sesión temática de Sistemas Dinámicos en SUMA
Viernes 16 de diciembre.
14:00-14:45 Jairo Bochi
14:45-15:30 Sebastián Donoso
16:00-16:45 Cristóbal Rivas
16:45-17:30 María Isabel Cortez
17:30-18:15 Carlos Vásquez
18:15-19:00 Andrés Koropecki
Sábado 17 de diciembre.
09:30-10:15 Alejandro Maass
10:15-11:00 Alejandro Kocsard
Mas informaciones en http://52.67.44.135/web/suma2016/
The geometry of wild chaos and blenders
Stefanie Hittmeyer
The University of Auckland, New Zealand.
Miércoles 07 de diciembre, 16:00 hrs., sala 2-3.
Wild chaos and blenders are two geometric mechanisms to construct complicated dynamics in noninvertible maps of dimension at least two and diffeomorphisms of dimension at least three. We first consider a two-dimensional noninvertible map that was introduced by Bamón, Kiwi and Rivera in 2006 as a model of wild Lorenz-like chaos. Wild chaos denotes the existence of a hyperbolic set with robust homoclinic tangencies. Advanced numerical techniques enable us to study how the critical set of the map interacts with the stable and unstable sets of a saddle fixed point as a parameter is varied along a path towards the wild chaotic regime. We find four types of bifurcations, namely, homoclinic tangencies (which also occur in invertible maps), and three types of tangency bifurcations involving the critical set (and specific to this type of noninvertible map). Overall, a consistent sequence of all four bifurcations emerges, which we present as a first attempt towards explaining the geometric nature of wild chaos. We further use this information to obtain an indication of the size of the parameter region where wild Lorenz-like chaos is conjectured to exist. We then consider a family of three-dimensional Hénon-like maps that exhibit blenders in a specific regime in parameter space. Blenders are hyperbolic sets that admit invariant manifolds that behave like geometric objects which have dimensions higher than expected from the manifolds themselves. We compute stable and unstable manifolds in this system, enabling us to show one of the first numerical pictures of the geometry of blenders. We furthermore present numerical evidence suggesting that the regime of existence of the blenders extends to a larger region in parameter space. This talk is based on joint work with Bernd Krauskopf, Hinke Osinga and Katsutoshi Shinohara.
Double recurrence Wiener-Wintner theorem and some of its consequences
Ryo Moore
Pontificia Universidad Católica de Chile.
Viernes 25 de noviembre, 16.00 hrs., sala 2-2.
We will first discuss an extension of J. Bourgain’s double recurrence theorem to the Wiener-Wintner type averages. Secondly, we will discuss some of the consequences that followed from this result, such as a generalization of the polynomial Wiener-Wintner theorem, a result in weighted multiple ergodic averages, and its connection to a nilsequence Wiener-Wintner theorem. This is a joint work with I. Assani, and partly with D. Duncan.
Entropía y escape de masa para flujos geodésicos
Felipe Riquelme
Pontificia Universidad Católica de Valparaíso.
Viernes 18 de noviembre, 16.00 hrs., sala 2-2.
Sea un espacio métrico compacto y un homeomorfismo de en sí mismo. Si dotamos al conjunto de medidas de probabilidad -invariantes en [/math]X[/math] con la topología débil*, entonces dicho conjunto es compacto. En particular, toda sucesión convergente de medidas de probabilidad -invariantes tiene como límite una medida de probabilidad invariante. Si comparamos las entropías de las medidas de la sucesión con la entropía de la medida límite, de manera general no es posible obtener relaciones entre estas. Sin embargo, si es un homeomorfismo expansivo, sabemos que la entropía es semi-continua superior. Si suponemos ahora que [/math]X[/math] es un espacio no compacto, entonces el conjunto de medidas de probabilidad invariantes por un homeomorfismo dado no es necesariamente compacto. En particular, una sucesión de tales medidas puede perder masa en el límite. En esta charla estudiaremos este problema para el caso particular de flujos geodésicos en variedades Riemannianas a curvatura negativa acotada. Siendo más precisos, daremos una estimación del error en la semi-continuidad de la entropía en términos del escape de masa para variedades geométricamente finitas. Esta estimación permitirá mostrar que en caso de no haber pérdida de masa, la entropía del flujo geodésico es semi-continua superior. Para finalizar, se estudiará un ejemplo concreto del caso geométricamente infinito.
Dynamics behind a one-parameter family of chaotic sequences
Arnaud Meyroneinc
Instituto Venezolano de Investigaciones Científicas.
Viernes 28 de octubre, 16.00 hrs., sala 2-2.
The paradigm of the sensitive dependence on initial conditions states that the source of unpredictability in chaotic dynamics is an exponential growth of discrepancies on initial conditions. We provide numerical evidences of an extreme form of sensitivity to initial conditions in a family of one-dimensional self–ruling dynamical systems. The simplest example in this family is the well known, explicitly solvable, chaotic quadratic map. We prove that for typical values of the parameter, the orbits satisfy closed–form expressions and are related to iterated function systems. Besides the classical notion of sensitivity, this family of chaotic systems also exhibits a sensitivity in the choices of the evolution rule encoded in the initial condition.
Órdenes y representaciones en de y otros grupos relacionados
Juan Alonso
Universidad de la República, Uruguay.
Viernes 14 de octubre, 16.00 hrs., sala 2-2.
Sea una superficie hiperbólica cerrada y orientable. Hablaré de las representaciones de en sin puntos fijos globales. En un trabajo en conjunto con J. Brum y C. Rivas construimos varios tipos de perturbaciones continuas de dichas representaciones, que no son semi-conjugadas a la original. En la charla explicaré una de éstas construcciones, que sirve también para grupos más generales: los grupos obtenidos como producto amalgamado de dos grupos libres, identificando subgrupos cíclicos. Esto trae como consecuencia que el espacio de órdenes de no tiene puntos aislados.
Hiperbolicidad parcial en variedades de dimensión 3
Jana Rodriguez Hertz
Universidad de la República, Uruguay.
Miércoles 12 de octubre, 17.00 hrs., Salón de Honor de la UTFSM ubicado en el Edificio A.
Un difeomorfismo parcialmente hiperbólico es una generalización natural de los hiperbólicos. En las dinámicas hiperbólicas el comportamiento de la derivada tiene dos direcciones invariantes, una expansora y una contractiva. En los parcialmente hiperbólicos, además de estas dos se le agrega una dirección central que tiene un comportamiento intermedio. Las variedades de dimensión 3, las de menor dimensión que aceptan este comportamiento, son además, donde tienen lugar las dinámicas más interesantes. Veremos un pantallazo de los avances sobre ergodicidad integrabilidad y clasificación de estas dinámicas.
Minicurse:
Between holomorphic dynamics and algebraic geometry (Part 3)
Matthieu Arfeux
Pontificia Universidad Católica de Valparaíso.
Viernes 23 de septiembre 16:00 hrs., sala 2-2.
During the first two talks we have seen how the Deligne-Mumford compactification of the moduli space of marked spheres is included in the Berkovich projective line over the completed field of formal Puiseux series.
During this last talk we will see how to define dynamics in the non-archimedean world. We will translate this dynamics in the Deligne-Mumford world and show how this is related to interesting questions in holomorphic dynamics. If we have time we will talk about the link with questions from Thurston’s work in Teichmuller spaces.
Tropical Complex Dynamics
Mitsuhiro Shishikura
Kyoto University, Japan.
Jueves 15 de septiembre, 14:30 hrs., sala 2-2.
Complex rational maps induce rich and interesting dynamics on the Riemann sphere. The sphere is divided into two sets: the Fatou set where the dynamics is tame, and the Julia set where the dynamics is chaotic.
For a rational map with non-empty Fatou set, one can associate a piecewise linear map on a tree. From this “tree map”, on “toropicalized complex dynamics”, we can derive some information on whether certain type of dynamics can be realized, or at which degree such dynamics can be realized. This tree map is supposed to describe the degeneration of rational maps under the limit of quasiconformal deformation, or the boundary of the moduli space.
In this talk, we will discuss various problems related to the tropical complex dynamics.
Sobre algunas cosas que aprendí de Jean-Christophe Yoccoz
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 09 de septiembre 16:00 hrs., sala 2-2.
Una de las grandes contribuciones de Jean-Christophe Yoccoz a la teoría de los Sistemas Dinámicos es la caracterización completa de los difeomorfismos del círculo que son conjugados a su versión lineal. Se trata de resultados de los años 80, los que fueron fundamentales no solo en el devenir del área en los años siguientes, sino también en la decisión del comité de la Medalla Fields para otorgársela en 1994 !!! Como un homenaje a este extraordinario matemático, les contaré lo que entiendo del tema, junto con algunas historias de mi relación con él como estudiante.
Minicurse:
Between holomorphic dynamics and algebraic geometry (Part 2)
Matthieu Arfeux
Pontificia Universidad Católica de Valparaíso.
Viernes 02 de septiembre 16:00 hrs., sala 2-2.
Minicurse:
Between holomorphic dynamics and algebraic geometry (Part 1)
Matthieu Arfeux
Pontificia Universidad Católica de Valparaíso.
Viernes 26 de agosto, 16:00 hrs., sala 2-2.
My goal is to present my thesis work and some recent developments for people from diferent areas. These works relates to dynamical systems using tools of algebraic geometry, it relates in particular to holomorphic and non archimedean dynamics, hyperbolic geometry and Teichmüller spaces, Deligne-Mumford compactification of moduli space of stable curves. These words may be a little scaring but the idea is to show on a concrete examples that there is a pleasant way to think about them.
I am planing to follow three main steps. First I will talk about the motivation from holomorphic dynamics and describe the how to rewrite the Deligne-Mumford compactification of the moduli space of marked spheres and to do dynamics with it. Then I will introduce the language of Berkovich spaces on the completed field of formal Puiseux series, I will show how we can see the Deligne-Mumford compactification living inside this space and how the non archimedean dynamics is exactly the one we introduced on it. Finally I will explain how to use complex dynamics and tools developed there (such as Thurston’s characterization of rational maps) to create, via this bridge, interesting dynamical systems in the non-archimedean world.
I am not expecting anybody to have a particular background. I wish these lectures to be closer to informal discussions, guided by the motivations of the people attending.
Stability of measures in interval dynamics
Mike Todd
University of St Andrews, UK.
Viernes 19 de agosto, 16:00 hrs., sala 2-2.
Given a family of interval maps, each map possessing a canonical measure (an invariant measure absolutely continuous w.r.t. Lebesgue – an acip), we have a weak form of stability if these measures change continuously through the family. Even for uniformly hyperbolic dynamical systems this stability can fail. I’ll give minimal conditions for a class of non-uniformly hyperbolic interval maps to satisfy this stability property. This work forms part of a paper with Neil Dobbs, where more general thermodynamic properties are proved to be stable (entropy, pressure, equilibrium states), and I’ll give some indication of the general approach there.
Difeomorfismos conservativos isotópicos a Anosov en T3
Martin Andersson
Universidade Federal Fluminense, Brasil.
Viernes 10 de junio, 16:00 hrs., sala 2-2.
En esta conferencia hablaremos sobre la dinámica de difeomorfismos que son obtenidos deformando un difeo- morfismo de Anosov, manteniedo una estructura de hiperbolicidad débil. Demostraremos que estos son siem- pre transitivos y hablaremos sobre la possibilidad de demostrar ergodicidad.
Este es un trabajo en colaboración con Shaobo Gan.
Normas extremales y aplicaciones
Jairo Bochi
Pontificia Universidad Católica de Chile.
Viernes 03 de junio, 16:00 hrs., sala 2-2.
Dado un conjunto de matrices, el “joint spectral radius” (JSR) es la más grande tasa de expansión asintótica de los productos de esas matrices. Bajo una condición de irreductibilidad, se muestra que existe una norma extremal, es decir, una norma con respecto a la cual ninguna matriz puede expandir más que el JSR. Pasando al contexto más general de cociclos lineales, el JSR (o mejor, su log) es remplazado por el máximo del exponente de Lyapunov sobre todas las medidas invariantes. En un trabajo conjunto con Eduardo Garibaldi, consideramos cociclos de tipo “fiber bunched” arriba de dinámica uniformemente hiperbólica. Demostramos la existencia de norma extremal bajo una condición de irreductibilidad. Aplicando ese teorema, identificamos los soportes de las medidas invariantes que maximizan el exponente de Lyapunov, obtenemos descomposiciones dominadas en esos conjuntos, y mostramos que el exponente de Lyapunov maximal se puede aproximar de manera eficiente utilizando órbitas periódicas de bajo período (extendiendo así resultados de Berger-Wang, Morris, y Kalinin).
Continuidad absoluta de foliaciones invariantes para difeomorfismos genéricos
Enzo Fuentes
Pontificia Universidad Católica de Valparaíso.
Viernes 27 de mayo, 16:00 hrs., sala 2-2.
En 1967, Anosov demostró que para un difeomorfismo de Anosov de clase , las foliaciones estables e in- estables son de clase en una variedad de dimensión 2, pero en una variedad de dimensión superior son solo absolutamente continuas. En este sentido, las foliaciones absolutamente continuas son una herramienta fundamental para el estudio de propiedades ergódicas. Luego, varios autores fueron generalizando este resultado para difeomorfismos de clase parcialmente hiperbólicos, no-uniformemente hiperbólicos, etc. El problema se genera al considerar la topología , ya que hay ejemplos donde la continuidad absoluta falla (Bowen, Robinson-Young). Así, nace la pregunta: Genéricamente, ¿cómo son las foliaciones estables e inestables para difeomorfimos de Anosov ?. En relación a esto, se verán definiciones de continuidad absoluta, además de ver algunos resultados similares referidos a la existencia de medidas de probabilidad invariantes absolutamente continuas con respecto a Lebesgue.
Zero entropy subgroups of the mapping class group
Kamlesh Parwani
Eastern Illinois University, USA.
Viernes 20 de mayo, 17:15 hrs., sala 2-2.
Let be a compact surface with boundary. We are interested in the question of how a group action on permutes a finite invariant set . More precisely, how the algebraic properties of the induced group of permutations of a finite invariant set a ects the dynamical properties of the group. Our main result shows that in many circumstances if the induced permutation group is not solvable then among the homeomorphisms in the group there must be one with a pseudo-Anosov component. We formulate this in terms of the mapping class group relative to the finite set and show the stronger result that in many circumstances (e.g. if ) this mapping class group is itself solvable if it has no elements with pseudo-Anosov components. This is joint work with John Franks.
Contraejemplos a la desigualdad de Ruelle
Felipe Riquelme
Université de Rennes 1, Francia.
Viernes 20 de mayo, 16:00 hrs., sala 2-2.
En esta charla discutiremos la veracidad (o falsedad) de la desigualdad de Ruelle en el marco de difeomorfismos definidos sobre variedades Riemannianas no compactas. Esta desigualdad, válida para cualquier difeomorfismo de clase C1 de una variedad compacta, nos dice que la entropía de Kolmogorov-Sinai es menor o igual a la suma de los exponentes de Lyapunov positivos. Veremos que, quitando la hipótesis de compacidad, esta desigualdad deja de ser siempre cierta. Siendo más precisos, construiremos una familia de contraejemplos de difeomorfismos en variedades no compactas tales que los exponentes de Lyapunov son todos nulos mientras que la entropía puede ser escogida de manera arbitraria. Si el tiempo lo permite, se discutirán algunos casos genéricos sobre los cuales la desigualdad se satisface.
Coexistencia de infinitos atractores para dinámicas de superficie
Enrique Pujals
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Brasil.
Viernes 13 de mayo, 16:00 hrs., sala 2-2.
En los años setenta, Newhouse probó que cerca de un difeomorfismo de superficie que posee una tangencia homoclínica, existen abiertos conteniendo un residual de difeos tal que cada uno de ellos exhiben infinitos atractores periódicos.
A pesar de ser un fenómeno prevalente desde el punto de vista topológico, surgió la pregunta natural de si el mismo fenómeno sería frecuente cuando se considerase familias paramétricas.
Conjuntamente con P. Berger y S. Crovisier, mostramos que para endomorfismos de superficie exhibiendo un “biciclo” (tangencia y ciclo heterodimensional), existen abiertos próximos tal que para familias paramétricas genéricas de endomorfismos en ese abierto, la medida de los parámetros de las dinámicas que poseen infinitos atractores periódicos es positiva.
En la charla, trataremos de explicar las nuevas herramientas que son utilizadas para obtener el resultado.
Difeomorfismos de superficie en la frontera del caos
Enrique Pujals
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Brasil.
Jueves 12 de mayo, 17:30 hrs., Sala Aula.
Charles Tresser, inspirado en sus estudios sobre la frontera del caos para el caso de dinámicas unidimensionales del intervalo, conjeturó que en el espacio de difeomorfismos suaves y disipativos del disco que preservan orientación, las dinámicas que están en la frontera de aquellos con entropía positiva, exhiben una “cascada de duplicación de periodo”.
Conjuntamente con S. Crovisier y C. Tresser, probamos esta conjetura asumiendo que los difeomorfismos son “fuertemente disipativos”.
Durante la charla, trataremos de explicar en que consiste“entender dinámicas en la frontera del caos” y pre- sentar tanto la prueba unidimensional como su contrapartida bidimensional.
Simplicidad del espectro de Lyapunov para cociclos lineales sobre mapas parcialmente hiperbólicos
Mauricio Poletti
Instituto Nacional de Matemática Pura e Aplicada (IMPA), Brasil.
Viernes 06 de mayo, 16:00 hrs., sala 2-2.
El estudio de cocyclos lineales es un tema clásico y bastante desarrollado dentro del área de sistemas dinámicos y teoría ergódica, el ejemplo más simple es dado por la derivada de un difeomorfismo, pero la noción es más general y aparece en otras situaciones como la teoría espectral de operadores de Schrödinger.
Algunas de las principales herramientas para estudiar la dinámica de los cocyclos son los exponentes de Lyapunov y espacios de Oseledets, dados por el teorema ergódico multiplicativo de Oseledets. Entre las preguntas clásicas se encuentra el problema de simplicidad del espectro cuando los espacios de Oseledets tienen dimensión 1?.
Criterios de Simplicidad del espectro fueron dados por Ghivarsch-Raugi, Gol’dsheid-Margulis y, más recientemente, Bonatti-Viana e Avila-Viana. En estos casos los autores consideran mapas hiperbólicos, como shifts y difeomorfismos Axioma A.
En este trabajo extendemos dichos criterios para una clase de sistemas parcialmente hiperbólicos. Especifi- camente skew-products: f : Σ × K → Σ × K
f(x, t) = (σ(x), fx(t)) (1)
donde σ : Σ → Σ es un homeomorfismo hiperbólico. El cociclo FˆA : Mˆ ×Cd → Mˆ ×Cd es definido por un mapa A : Σ×K → SL(d,R), fiber bunched, de la siguiente forma:
Probamos que con ciertas condiciones de twisting y pinching tenemos espectro simple. Este es un trabajo en conjunto con el profesor Marcelo Viana.
Exponente Lebesgue-esencial y entropía positiva en difeomorfismos C1 con splitting dominado
Eleonora Catsigeras
Universidad de la República, Uruguay.
Viernes 29 de abril 17:00 hrs., sala 2-2.
Sea f un difeomorfismo de clase C1 con splitting dominado en una variedad compacta. A partir de un ejemplo de Gourmelon y Potrie, se sabe que la entropía topológica de f puede ser cero. Aquí ex- pondremos condiciones suficientes para que la entropía sea positiva. Estas condiciones consideran la variación de la medida de Lebesgue en la variedad, al iterar el difeomorfismo. Definimos el exponente “Lebesgue-esencial” como la tasa exponencial asintótica de crecimiento (o decrecimiento si fuera negativa) de la medida de Lebesgue. Probamos que si el exponente Lebesgue-esencial hacia el futuro o hacia el pasado no es muy negativo, entonces la entropía topológica de f es positiva. Como caso particular, si la medida de Lebesgue es invariante, o si es una medida no invariante pero “recurrente” (según definición que introduciremos), entonces la entropía topológica de f es positiva. Este es un trabajo conjunto con Xueting Tian.
Hipersuperficies Levi-flat en las superficies complejas
Carolina Canales
Université Paris-Sud, France.
Viernes 29 de abril, 16:00 hrs., sala 2-2.
En esta charla hablaremos de hipersuperficies Levi-flat analíticas contenidas en superficies complejas algebraicas. Estas hipersuperficies poseen una foliación por curvas holomorfas llamada foliación de Cauchy-Riemann (CR). Nos interesa la relación ente la dinámica de la foliación CR, la topolgía de la hipersuperficie Levi-flat y la geometría de su complemento. Mostraremos que si la dinámica de la foliación CR es caótica (es decir que no posee una medida transversa invariante), entonces las componentes conexas del complemento de la hipersuperficie Levi-flat son modificaciones de espacios Stein. Esto nos permite demostrar que las hipersuperficies Levi-flat analíticas caóticas son invariantes por una foliación holomorfa singular definida en toda la superficie compleja ambiente. Podemos aplicar estos resultados para demostrar que una hipersuperficie Levi-flat analítica transversalmente afín con- tenida en una superficie compleja algebraica posee una medida transversa invariante. Finalmente podemos mostrar que si una hipersuperficie Levi-flat contenida en una superficie compleja algebraica es difeomorfa a un fibrado hiperbólico en toros, entonces su foliación CR tiene necesariamente una hoja compacta.
Piecewise contraction maps on the interval
Arnaldo Nogueira
Institut de Mathématiques de Marseille, France.
Viernes 22 de abril, 16:00 hrs., sala 2-2.
Certain mathematical models, like contracting outer billiards and switched flow systems, are described by PC maps. In their setup, it is expected that a typical PC map has finitely many orbits and every orbit converges to a periodic orbit. In our talk we will prove the claim for interval PC maps. Our approach is the following: We fix an Iterated Function System formed by n Lipschitz contraction interval maps, φi : I → I. Every partition of the interval into n subintervals, {I1, . . . , In}, is associated in a natural way to a parameter-vector (x1, . . . , xn−1), where 0 < x1 < . . . < xn−1 < 1. Therefore every parameter-vector defines a PC map fx1,…,xn−1 : I → I by setting f|Ii = φi. We prove that, for Lebesgue almost every parameter-vector, the map fx1,…,xn−1 has at most n periodic orbits and is asymptotically periodic.
Joint work with Benito Pires and Rafael Rosales.
Optimal decay of correlations for non-uniformly hyperbolic systems
Sandro Vaienti
Université de Marseille, France.
Viernes 15 de abril, 16:00 hrs., sala 2-2.
We present some new result about optimal decay of correlations (lower bounds), for invertible and non-invertible dynamical systems with weak hyperbolicity (in collaboration with H Zhang).
Non-differentiability points for topological conjugacies of countable branch Markov maps.
Thomas Jordan
Bristol U.K.
Viernes 1 de abril, 16:00 hrs., sala 2-2.
We consider topological conjugacies between countable Markov maps. In particular we look at the set of points where the derivative of the conjugacy either does not exist. We will show that if we have a sequence of maps, T_k converging pointwise to a map T, then the dimension of the set tends to 1. We will give examples where this holds but other quantities such as the entropy of the absolutely continuous measure does not behave continuously. This is joint work with Sara Munday and Tuomas Sahlsten.
Seminarios anteriores 2015
Distribución asintótica de puntos de Hecke sobre
Sebastian Herrero
Pontificia Universidad Católica de Chile.
Viernes 18 de diciembre, 16:00 hrs., sala 2-2.
Sea un número primo, la completación de una clausura algebraica de y ” style=”float:top;” border=”0px” /> el espacio de moduli de curvas elípticas sobre (módulo isomorfismo sobre ). Dada y definimos los puntos de Hecke de orden asociados a como los puntos que admiten una isogenia de grado . Esto equivale a tener donde es un subgrupo de de cardinalidad . Con estos puntos de Hecke podemos construir el divisor
sobre . Nosotros estamos interesados en describir la distribución de cuando tiende a infinito. El caso clásico sobre es bien conocido: los puntos de Hecke se equidistribuyen respecto a una medida natural en , la medida hiperbólica. En particular, la distribucón asintótica de dichos puntos es independiente del punto inicial . Nuestro resultado principal es una descripción de la distribución asintótica de cuando bajo ciertas condiciones sobre el tipo de reducción de módulo , el ideal maximal del anillo de enteros de , y sobre la norma -ádica de . Esta presentación se basa en un trabajo en colaboración con Ricardo Menares (PUCV) y Juan Rivera Letelier (PUC – U. of Rochester).
Entropía topológica para semiflujos impulsivos
Nelda Jaque
Universidad Católica del Norte.
Viernes 11 de diciembre, 16:00 hrs., sala 2-2.
SRB measures for non uniform hyperbolic endomorphisms
Anderson Cruz
Universidade Federal de Bahia, Brasil.
Viernes 04 de diciembre, 16:00 hrs., sala 2-2.
Irreducibilidad de curvas periódicas
Jan Kiwi
Pontificia Universidad Católica de Chile.
Viernes 20 de noviembre, 16:00 hrs., sala 2-2.
Estas superficies son los ejemplos más simples de espacios de parámetros con topología no trivial (e.g. no simplemente conexos). Su descripción global representa un desafío para las técnicas existentes.
Una de las preguntas más básicas abiertas acerca de la estructura global de es determinar si es conexo (equivalentemente, irreducible). Esta pregunta fue formulada a principio de la década de los 1990 por Milnor y hasta el momento sólo sabemos que para 4″ style=”float:top;” border=”0px” /> la respuesta es positiva.
En esta charla describiré una estrategia que hemos elaborado en conjunto con Matthieu Arfeux (Stony Brook University) para demostrar que con primo arbitrario es conexo. Esto constituye un trabajo en progreso.
How smooth are the stationary measures?
Italo Cipriano
University of Warwick, UK.
Viernes 30 de octubre, 16:00 hrs., sala 2-2.
Entropía e hiperbolicidad uniforme
Mario Roldan
Pontifícia Universidade Católica do Rio de Janiero, Brasil.
Viernes 23 de octubre, 16:00 hrs., sala 2-2.
Dinámica Porteña en la 4ta Escuela de Doctorado de Valparaíso
Conferencia Inaugural:
Attractors with equilibrium.
María Jose Pacífico
(U. Federal de Rio de Janeiro, Brasil)
Miércoles 14 de Octubre, 17.00 hrs.
USM, Viña del Mar.
We shall survey about 3-flows presenting equilibrium accumulated by regular orbits. In particular, we shall discuss, from the topological as well from the measure theoretical point of view, some of the main results on Lorenz-like flows, and on flows displaying global “strange” attractors with spiral geometry.
Dinámica Porteña en la Semana de la Matemática
Cursillo:
Dinámica Holomorfa en el Plano Complejo
Francisco Valenzuela
(PUCV, Chile)
Conferencias:
Positive Thinking.
Daniel Smania
(ICMC-USP Sao Carlos, Brasil)
Jueves 8 15:00-16:00
Several problems in mathematics involve positive matrices, that is, matrices whose entries are all positive. For example, knowing the rates of immigration and emigration between certain cities, and that such rates are constant over time, it is possible to deduce the populations of the cities in the distant future with extraordinary precision without even knowing almost nothing about the current population! this results involves the study of positive matrices using the so-called Perron-Frobenius theorem. The demonstration of this result is also fascinating because it uses and has connections to several areas of mathematics, as metric spaces (Banach Contraction Principle) and Geometry (non-Euclidean geometries).
Circloids atractores y entropía
Martin Sambarino
(U. de la República, Uruguay)
Jueves 8 16:10-17:10
Un circloid en el anillo es un continuo que separa el anillo en exactamente dos componentes dejando los bordes del anillo en componentes distintas y ningún subcontinuo propio tiene esta propiedad. En esta charla consideraremos homemorfismos del anillo que tienen un circloid atractor y que tiene puntos que rotan a diferente velocidad. El objetivo es responder la siguiente pregunta: tal homeomorfismo tiene necesariamente entropía topológica positiva?
Endomorfismos Robustamente Transitivos con puntos críticos persistentes
Cristina Lizana
Universidad de Los Andes, Venezuela.
Viernes 25 de septiembre, 16:00 hrs., sala 2-2.
endomorfismos robustamente transitivos admitiendo puntos críticos persistentes.
Mostraremos diferentes tipos de ejemplos de mapas robustamente transitivos
en cualquier clase de isotopia de endomorfismos actuando sobre el Toro bidimensional admitiendo puntos críticospersistentes. También daremos condiciones necesarias para la transitividad robusta en esta configuración.
Este es un trabajo en conjunto con Jorge Iglesias y Aldo Portela.
Convergencia en casi todo punto
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 14 de agosto, 16:00 hrs., sala 2-2.
En esta charla discutiré aplicaciones de este método para demostrar el Teorema de diferenciación de Lebesgue y el Teorema ergódico de Birkhoff. A pesar de que este tipo de técnicas han sido ampliamente utilizadas en los últimos años, no discutiré ningún resultado posterior a 1939.
Deligne-Mumford compactification and Berkovich spaces
Matthieu Arfeux
Stony-Brook University, USA.
Viernes 07 de agosto, 16:00 hrs., sala 2-2.
Dynamical cubes, criteria for systems having product extensions and applications
Sebastián Donoso
Universidad de Chile – Université Marne-la-Vallée, Francia.
Viernes 31 de julio, 16:00 hrs., sala 2-2.
This is a joint work with Wenbo Sun.
Sensitive dependence of Gibbs measures at low temperature
Daniel Coronel
Universidad Nacional Andrés Bello.
Viernes 24 de julio, 16:00 hrs., sala 2-2.
The Gibbs measures of an interaction can behave chaotically as the temperature drops to zero. We observe that for some classicallattice systems there are interactions exhibiting a related phenomenon of sensitive dependence of Gibbs measures: An arbitrarily small perturbation of the interaction can produce significant changes in the low-temperature behavior of its Gibbs measures.
For some one-dimensional XY models we exhibit sensitive dependence of Gibbs measures for a (nearest-neighbor) interaction given by a smooth function, and for perturbations that are small in the smooth category.
We also exhibit sensitive dependence of Gibbs measures for an interaction on a classical lattice system with finite-state space. This interaction decreases exponentially as a function of the distance between sites; it is given by a Lipschitz continuous potential in the configuration space.
The perturbations are small in the Lipschitz topology. As a by-product we solve some problems stated by Chazottes and Hochman.
Joint work with Juan Rivera-Letelier.
Decay of Geometry for Fibonacci Critical Coverings of the Circle
Edson Vargas
Universidade de São Paulo, Brasil.
Viernes 10 de julio, 16:00 hrs., sala 2-2.
We study ergodic properties of a critical double covering of the circle, say . This is a smooth double covering of the circle which has only one critical point, which we assume to be of finite order . Examples of these maps are the Arnold maps , induced by .
We assume that is topologically conjugate to the double covering , induced by . Although the Lebesgue measure on the circle is invariant by , we prove that it may happen that has no absolutely continuous invariant measure (acim). One cause of this kind of behavior is a strong recurrence of the critical point. We can study this from a combinatorial point of view and, as a consequence, we get that there is an uncountable set of parameters such that the critical covering has no acim. These type of results were obtained before in the context of unimodal maps by H. Bruin, J. Guckenheimer, F. Hofbauer, S. Johnson, G.Keller, T. Nowicki, S. van Strien and others. In the critical covering case there is no dynamical symmetry around the critical point and this cause some new combinatorial difficulties which need to be understood.
Ciclos Heterodimensionales Robustos
Sebastián Pérez
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Viernes 03 de julio, 16:00 hrs., sala 2-2.
References:
Complex bounds for interval maps
Sofia Trejo
Universidade de São Paulo, Brasil.
Viernes 12 de junio, 16:00 hrs., sala 2-2.
The use of complex methods is now common practice in the field of one-dimensional (real) dynamics. In fact, it was the use of complex tools that allowed to solve many important problems in the field, such as density of hyperbolicity [KSvS] and the Palis conjecture for the quadratic family [L]. In this talk, I will discuss how to build complex “Markov partitions” extending the dynamics of (real) interval maps, and some of its applications. More specifically, I will explain the basic ideas behind the construction of complex box-mappings and the proof of complex bounds.
References:
[CvST] T. Clark, S. van Strien and S. Trejo. Complex bounds for real maps. Preprint: arXiv:1310.8338.
[KSvS] O. Kozlovski, W. Shen and S. van Strien. Density of hyperbolicity in dimension one. Ann. of Math. 166 (2007), 145-182.
[L] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Annals of Mathematics, 156 (2002), p.1-78.
Implicit Computational Geometry
Daniel Reem
Universidade de São Paulo, Brasil.
Viernes 05 de junio, 16:00 hrs., sala 2-2.
Computational geometry investigates issues related to geometric objects, with high emphasize on computational aspects. Classical objects are defined by explicit relations. Following a problem related to printed circuit boards, Asano, Matousek and Tokuyama introduced a few years ago “implicit computational geometry” in which the objects are defined by implicit relations, e.g., by a fixed point equation involving sets. Fundamental issues such as existence, uniqueness, and computation of exotic objects are integral part of this emerging and exciting branch of research. The talk will review the history and main results of this field, as well as various challenges that are waiting to be addressed.
Medidas absolutamente continuas para aplicaciones aleatorias unidimensionales
Javier Solano
Universidade Federal Fluminense, Brasil.
Viernes 29 de mayo, 16:00 hrs., sala 2-2.
Consideramos perturbaciones aleatorias de aplicaciones con finitos puntos críticos, definidas en el intervalo. Mostramos que la positividad de los exponentes de Lyapunov implica la existencia de un número finito de medidas invariantes absolutamente contínuas, que determinan el comportamiento asintótico de casi todos los puntos del intervalo.
Dependencia sensitiva de medidas de Gibbs
Juan Rivera-Letelier
Pontificia Universidad Católica de Chile.
Viernes 15 de mayo, 16:00 hrs., sala 2-2.
Este es un trabajo en colaboración con Daniel Coronel.
On a few statistical properties of non uniformly expanding dynamical systems
Sandro Vaienti
Université de Marseille, Francia.
Viernes 8 de mayo, 16:00 hrs., sala 2-2.
We present some results of probalistic nature applied to non uniformly expanding systems: decay of correlations, Borel Cantelli lemma, loss of memory, rare events.
Unicidad de la medida de máxima entropía para flujos geodésicos en superficies compactas sin puntos focales y genus >1
Rafael Ruggiero
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Viernes 24 de abril, 16:00 hrs., sala 2-2.
Demostramos que el flujo geodésico de una superficie compacta sin puntos focales de genus >1 es semi-conjugado preservando parámetro a un flujo expansivo en una variedad compacta. De hecho, se prueba que el flujo geodésico inicial es lo que se llama una extensión del flujo expansivo segun la definición usada por Sambarino, Vasquez, Buci et al. Este flujo expansivo tiene una serie de propiedades típicas de la dinámica topológica hiperbólica: densidad de órbitas periódicas, transitividad, producto local, sombreamiento,etc.
Groups of Polynomial growht and 1D Dynamics
Kiran Parkhe
Technion Israel Institute of Technology, Israel.
Viernes 17 de abril, 17:00 hrs sala 2-2
Let be a connected one-manifold, and a group of homeomorphisms of which is finitely-generated and virtually nilpotent, i.e., which has polynomial growth. We prove a structure theorem which says, roughly, that the manifold decomposes into wandering regions (in which no -orbit is dense), and minimal regions (in which every -orbit is dense); and on the latter, the action is actually abelian.
As a corollary, if is a group of polynomial growth of degree , then for any , any continuous -action on is conjugate to an action by diffeomorphisms. This strengthens a result of Farb and Franks.
The Geometry behin Hamiltonian Dynamics with simmetries
Cristian Ortiz
Universidade de São Paulo, Brasil.
Viernes 17 de abril, 16:00 hrs., sala 2-2.
A Hamiltonian dynamical system consists on a symplectic manifold M together with a Hamiltonian function. The dynamics is given by the flow of the corresponding Hamiltonian vector field. Usually, one looks for constants of motion of the corresponding Hamiltonian system (i.e. first integrals) in order to study the underlying dynamics. We will see how this can be done whenever the system has a group of symmetries. We will explain how the presence of symmetries yields to first integrals (Noether’s Theorem) and how the Hamiltonian dynamics can be reduced to a system with less equations (Marsden-Weinstein reduction). The first part of the talk will be focused on the geometric aspects of Hamiltonian systems with symmetries. This will lead us to the notion of Poisson manifold, e.g. reduced dynamics is defined on a Poisson manifold. The second part of the talk will be concerned with the geometric structures arising in a possible quantization scheme of Poisson manifolds, in particular, Poisson manifolds with symmetries. If time permits, I will explain the geometry associated to Poisson manifolds with symmetries whose quotients are singular rather than smooth.
On circle endomorphisms with a flat interval and Cherry flows.
Liviana Palmisano
Impan, Poland.
10 de abril, 17:00 hrs., sala 2-2.
We study weakly order preserving circle maps with a flat interval. We prove that, if the rotation number is of bounded type, then there is a sharp transition from the degenerate geometry to the bounded geometry depending on the degree of the singularities at the boundary of the flat interval.
The general case of functions with rotation number of unbounded type is also studied. The situation becomes more complicated due to the presence of underlying parabolic phenomena.
Moreover, the results obtained for circle maps allow us to study the dynamics of Cherry flows. In particular we analyze their metric, ergodic and topological properties.
Dynamical systems with holes: slow mixing cases
Mike Todd
St Andrews University, Escocia.
Viernes 20 de marzo, 16:00 hrs., sala 2-2.
Fernandez and Demers studied the statistical properties of the Manneville-Pomeau map with the physical measure when a hole is put in the system, overcoming some of the problems caused by subexponential mixing. I’ll discuss the same setup, but with a class of natural equilibrium states. We find conditionally invariant measures and give precise information on the transitions between the fast exponentially mixing, the slow exponentially mixing and the subexponentially mixing phases. This is joint work with Mark Demers.
Coherencia dinámica para dimensión central grande
Raul Ures
Universidad de la República, Uruguay.
Viernes 13 de marzo, 16:00 hrs., sala 2-2.
Un difeomorfismo es parcialmente hiperbólico si existe una descomposición invariante del fibrado tangente, TM = Es + Ec + Eu, tal que el fibrado estable Es es uniformemente contraído, el inestable Eu uniformemente expandido y el central Ec presenta un comportamiento intermedio, puede expandir o contraer pero de manera m ́as débil que los otros dos.
Los teoremas clásicos de variedades estables implican que los dos fibrados fuertes se integran a sendas foliaciones invariantes. Esto en general no es cierto para para el fibrado central. Se dice que un difeomorfismo parcialmente hiperbólico es dinámicamente coherente si existen foliaciones invariantes tangentes a Es ⊕ Ec y a Eu ⊕ Ec. Es claro que al intersectar ambas se obtiene una foliación invariante tangente a Ec.
En esta charla consideraremos difeomorfismos parcialmente hiperbólicos que son isotópicos a un automorfismo parcialmente hiperbólico de un toro por la identidad en cualquier variedad compacta. Probaremos que si la isotopía puede realizarse de manera que el difeomorfismo se mantenga parcialmente hiperbólico con dimensiones de los fibrados constantes entonces es dinámicamente coherente.
La charla está basada en un trabajo conjunto en desarrollo con Jana Rodriguez Hertz y Jiagang Yang.
Maximizing measures and the topological entropy formula for random local diffeomorphisms.
Krerley Oliveira
Universidade Federal de Alagoas, Brasil.
Viernes 16 de enero, 16:00 hrs., sala 1-2.
Measure-theoretic chaos
Tomasz Downarowicz
Wroclaw University of Technology, Polonia.
Miércoles 14 de enero, 16:00 hrs., sala 1-6.
The notion of Li-Yorke chaos uses the metric, nonetheless, it does not depend on it, i.e., it is a conjugacy invariant. Similarly, the so called “mean Li-Yorke chaos”. Like in the case of most topological invariants, one would like to have a measure-theoretic analog of chaos, which is an isomorphism invariant and does not require fixing any topology. I will present such a notion, which is an analog of the mean Li-Yorke chaos, and discuss some of its properties.
Transitividad de endomorfismos conservativos del toro
Martin Andersson
Universidade Federal Fluminense, Brasil.
Viernes 09 de enero, 16:30 hrs., sala 2-2.
En esta conferencia apresento un resultado sobre la transitividad de homeomorfismos locales no invertibles de T^2 que presiervan area. El resultado diz que qualquer homoeomorfismo local deste tipo que sea homotópico a un endomorfismo lineal expansor o hiperbólico es transitivo.
Seminarios anteriores 2014
Anomalous Partially Hyperbolic Diffeomorphisms
Kamlesh Parwani
Eastern Illinois University, USA.
Viernes 28 de noviembre, 16:30 hrs., sala 2-2.
We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism
Seminarios anteriores 2013
On factors of Gibbs measures for almost additive potentials
Yuki Yayama
Universidad del Bío Bío.
Viernes 20 de diciembre, 16:30 hrs., sala 2-2.
Let be one-sided subshifts with the specification property and a factor map. Let be a unique invariant Gibbs measure for a sequence of continuous functions on , which is an almost additive potential with bounded variation.
We show that is a unique invariant Gibbs measure for a sequence of continuous functions on . For is a full shift, we characterize and by using relative pressure. This almost additive potential is an extension of a continuous function found by Pollicott and Kempton in their work on factors of Gibbs measures for continuous functions under factor maps.
We also consider the following question: Given a unique invariant Gibbs measure
for a sequence of continuous functions on , can we find an invariant Gibbs measure for a sequence of continuous functions on such that ? If is a full shift and is a unique invariant Gibbs measure for a function in the Bowen class, then we can find a preimage of which is a unique invariant Gibbs measure for a function in the Bowen class.
-Sistemas Dinámicos, álgebras producto cruzado y aplicaciones en Mecánica Cuántica
Fabian Belmonte
Viernes 13 de diciembre, 16:30 hrs., Cimfav (Pedro Montt 2421).
En esta charla introduciré los -sistemas dinámicos y las -álgebras asociadas, a estos conocidas como álgebras producto cruzado. Cada sistema sistema dinámico usual define naturalmente un -sistema dinámico, pero veremos que claramente el recíproco no es cierto. Enunciaré resultados que en el caso usual la correspondiente álgebra producto cruzado contiene información dinámica importante y ejemplificaré al menos uno de estos introduciendo la famosa álgebra conocida como “toro no conmutativo”. Si el tiempo nos acompaña, explicaré como estas álgebras aparecen en dos contextos cuánticos: cuantización y el famoso efecto Hall cuántico.
Hiperbolicidad Parcial en 3-Variedades
Pablo Carrasco
Universidade de São Paulo, Brasil.
Viernes 06 de diciembre, 16:30 hrs., sala 2-2.
Entropía para grupos actuando en el intervalo
Cristobal Rivas
Universidad de Santiago de Chile.
Viernes 29 de noviembre, 16:30 hrs., sala 2-2.
Comportamiento limitado para homeomorfismos del toro
Andrés Koropecki
Universidade Federal Fluminense, Brasil.
Viernes 15 de noviembre, 16:30 hrs., Cimfav (Pedro Montt 2421).
Sobre la regularización de aplicaciones conservativas
Sebastián Pérez
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Jueves 07 de noviembre, 12:00 hrs., sala 2-2.
Ciclos mínimos en característica positiva
Juan Rivera-Letelier
Pontificia Universidad Católica de Chile.
Viernes 25 de octubre, 16:30 hrs., sala 2-2.
La linealización local de puntos fijos es uno de los problemas centrales en sistemas dinámicos. En el caso de polinomios cuadráticos complejos, Yoccoz demostró que la existencia de ciclos pequeños es la única obstrucción para la linealización local de puntos fijos irracionalmente indiferentes.
En el caso de un cuerpo de característica impar, Lindhal demostró que ningún punto fijo indiferente de un polinomio cuadrático es localmente linealizable, en concordancia con la conjetura de Herman. En esta charla demostraremos que, en contraste con el caso complejo, en el caso de característica positiva no existen ciclos pequeños. Para esto, determinaremos exactamente el menor tamaño que puede tener un ciclo, en función de su período. Uno de los ingredientes principales en este estudio es la iteración de automorfismos de cuerpo que son salvajemente ramificados.
Este es un trabajo en colaboración con Karl Lindhal.
Límites de medidas de Gibbs para potenciales casi-aditivos
Godofredo Iommi
Universidad Católica de Chile.
Viernes 18 de octubre, 16:30 hrs., sala 2-2.
En esta charla discutiré algunos problemas de optimización ergódica. En particular probaremos que el límite (cuando la temperatura tiende a cero) del conjunto de medidas de Gibbs asociadas a familias de potenciales casi-aditivos corresponde a una medida maximizadora. Mostraremos aplicaciones de estos resultados al estudio del radio espectral conjunto.
Este es un trabajo desarrollado con Yuki Yayama.
Continuidad absoluta de convoluciones de Bernoulli
Pablo Shmerkin
Universidad Torcuato Di Tella, Argentina.
Viernes 11 de octubre, 16:30 hrs., sala 2-2.
Las convoluciones de Bernoulli son una familia de medidas en la recta, parametrizadas (en el rango de interés) por . La pregunta fundamental es para qué parámetros estas medidas resultan singulares; llamemos excepcionales a estos parámetros. Erdös ya en 1939 exhibió una familia numerable de parámetros excepcionales; hasta hoy no se sabe si hay otros. Recientemente demostré que el conjunto de parámetros excepcionales tiene dimensión de Hausdorff 0. Esto mejora resultados anteriores de Erdös, Kahane, Solomyak, Peres-Schlag y Hochman. Voy a contar la historia de las convoluciones de Bernoulli, algunas de sus conexiones con sistemas dinámicos, y la idea de la demostración, que es sorprendentemente simple.
Defensa de Tesis:
Teorema de hiperbolicidad de Mañé en dimensión 1
Romina Vicencio
Viernes 27 de septiembre, 17:30 hrs., sala 2-2.
En este trabajo, nos centramos en el estudio de la hiperbolicidad para aplicaciones diferenciables (de clase ) definidas en o .
En este caso, hiperbolicidad es lo mismo que expansividad asintótica en la derivada. Más concretamente, presentamos el teorema de hiperbolicidad debido Ricardo Mañé el cual establece que, si no es topológicamente equivalente a una rotación irracional en el círculo, y un conjunto compacto -invariante no contiene puntos críticos y sólo contiene puntos periódicos repulsores, entonces es hiperbólico.
Acoplamiento en billares con pequeñas perturbaciones aleatorias
Roberto Markarian
Universidad de la República, Uruguay.
Viernes 27 de septiembre, 16:30 hrs., sala 2-2.
Un primer intento de obtener resultados de ergodicidad en dinámicas de billares con pequeñas perturbaciones en los ángulos de salidas. Se muestra que se puede lograr acoplamiento de cualesquiera dos trayectorias en mesas de billares convexas.
Trabajo en desarrollo con Leonardo Rolla (IMPA), Vladas Sidoravicius (IMPA), Fabio Tal (USP), María Eulalia Vares (UFRJ).
Optimización de exponentes de Lyapunov
Jairo Bochi
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Viernes 06 de septiembre, 16:30 hrs., sala 2-2.
Voy a considerar cociclos de matrices 2 por 2 de tipo “one-step”. Voy a mostrar que si el cociclo tiene determinadas propiedades de hiperbolicidad (existen de conos estrictamente invariantes sin superposiciones) entonces las medidas que maximizan o minimizan el exponente de Lyapunov tienen entropía cero.
Este es un trabajo conjunto con Michal Rams (Varsovia).
Hiberbolicidad no uniforme robusta
Martin Andersson
Universidade Federal Fluminense, Brasil.
Viernes 30 de agosto, 16:30 hrs., sala 2-2.
En este seminario veremos lo que es hiperbolicidad parcial e hiperbolicidad no uniforme. Veremos para que sirven estos conceptos, porque son difíciles de estudiar con gran generalidad, y porque cuando se mezclan los dos, la matemática se hace mas bella.
Difeomorfismos parcialmente hiperbólicos en 3 variedades y pseudo-rotaciones del toro
Rafael Potrie
Universidad de la República, Uruguay.
Viernes 23 de agosto, 17:00 hrs., sala 2-2.
Presentaré algunos resultados recientes obtenidos en colaboración con Andy Hammerlindl (U. of Sydney) sobre clasificación de parcialmente hiperbólicos en dimensión 3. Mostraré como estudiando la holonomía de las foliaciones fuertes y como retornan a un toro transversal se pueden aplicar técnicas de pseudo-rotaciones irracionales para obtener consequencias dinámicas de nuestra clasificación.
Weakly almost periodic measures
Nicolae Strungaru
Macewan University, Canadá.
Viernes 23 de agosto, 16:00 hrs., sala 2-2.
We start the talk by introducing the class of weakly almost periodic measures, and their importance to physical diffraction. Then, given a weakly almost periodic measure , we introduce a dynamical system and study the properties of this system.
This is a joint project with Daniel Lenz.
Hacia la solución de tres preguntas fundamentales sobre foliaciones de codimensión 1
Andrés Navas
Universidad de Santiago de Chile.
Viernes 16 de agosto, 11:00 hrs., sala 2-2.
En esta charla se presentarán resultados definitivos que apuntan en una dirección afirmativa para dar respuesta a conjeturas de Ghys, Hector y Sullivan, a saber: las foliaciones de codimensión 1 minimales son ergódicas, mientras que si hay un minimal excepcional éste debe tener medida de Lebesgue nula y su complemento estará formado por finitas órbitas de componentes conexas.
Se trata de un trabajo en colaboración con B. Deroin y V. Kleptsyn.
Dynamical coherence for partially hyperbolic diffeomorphisms isotopic to Anosov
Martín Sambarino
Universidad de la República, Uruguay.
Viernes 26 de julio, 16:30 hrs., sala 2-2.
We prove that a partially hyperbolic diffeomorphism which is isotopic (through a isotopy by partially hyperbolic diffeomorphisms) to a linear Anosov diffeomorphism on the d-dimensional torus is dynamically coherent. We apply the above to study measures of maximal entropy in this setting.
Dynamical systems with holes: escape rates, equilibrium states and dimension
Mike Todd
St Andrews University, UK.
Viernes 05 de julio, 16:30 hrs., sala 2-2.
Given a smooth interval map with one or more critical points, we consider the dynamical behaviour of the system allowing mass to escape. Work by Bruin,Demers and Melbourne studied the escape of Lebesgue measure, obtaining a conditionally invariant measure absolutely continuous w.r.t. Lebesgue, as well as a related measure on the survivor set (the set of points which never escape). This was related to the study of equilibrium states. In this talk, motivated by Bowen’s formula for the dimension of dynamically defined sets, I’ll consider escape w.r.t. other natural measures and thus give an expression for the Hausdorff dimension of the survivor set. This is joint work with M. Demers.
Regularity of SRB measures for piecewise expanding unimodal maps
Fabian Contreras
University of Maryland, USA.
Viernes 14 de junio, 16:30 hrs., sala 2-2.
In a smooth one-parameter family of piecewise expanding unimodal maps , we will study the differentiability of the average of a function of bounded variation with respect to the SRB absolutely continuous invariant measure of . We will also study a generalization of this result and some ideas to develop in the future.
On minimality of IFSs on the interval -close to the identity
Katsutoshi Shinohara
University of Tokyo, Japón.
Viernes 17 de mayo, 16:30 hrs., sala 2-2.
We consider IFSs (iterated function systems) on the interval. It is known that, if those two generators are sufficiently -close to the identity, then there is a restriction on the shape of the (forward) minimal set. In this talk, I will explain that the similar result fails in -topology.
Continuity of quasi-morphisms on groups of area-preserving diffeomorphisms of surfaces
Pierre Py
Université de Strasbourg, Francia.
Viernes 03 de mayo, 16:30 hrs., sala 2-2.
I will recall the notion of a quasi-morphism on a group and describe a few examples of quasi-morphisms defined on groups of Hamiltonian diffeomorphisms of surfaces. Then we will try to answer the following question: which quasi-morphisms on these groups are continuous for the -topology? This question is related to the problem of the simplicity of the group of compactly supported area-preserving homeomorphisms of the disc. This is based on a joint work with M. Entov and L. Polterovich.
Ecuaciones cohomológicas sobre dinámicas hiperbólicas
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 05 de abril, 16:30 hrs., sala 2-2.
La resolución de ecuaciones cohomológicas es una necesidad importante a la hora de estudiar varios aspectos de un sistema dinámico: propiedades de trivialización de cociclos, linearización, medidas invariantes absolutamente continuas, subvariedades invariantes, etc. En esta charla haremos una revisión de la teoría de Livsic, la que responde positivamente a una pregunta de existencia de soluciones bajo la presencia de una obstrucción natural en un contexto abeliano. Al finalizar la charla presentaremos un resultado en la línea de la teoría de Livsc para grupos de gérmenes holomorfos (trabajo conjunto con Andrés Navas).
Lyapunov exponents in non-hyperbolic dynamics
Katrin Gelfert
Universidade Federal do Rio de Janeiro, Brasil.
Viernes 15 de marzo, 16:30 hrs., sala 2-2.
Deligne-Mumford Compactification and dynamic on trees of spheres
Matthieu Arfeux
Université de Toulouse 3, Francia.
Viernes 15 de marzo, 15:00 hrs., sala 2-2.
After recalling what is the Deligne-Mumford, one will show how it can be used to study the compactification of the dynamic of rational maps on the Riemann sphere.
Seminarios anteriores 2012
Almost-additive Ergodic Theorems on Amenable Groups
Felix Pogorzelski
University of Jena, Alemania.
Viernes 30 de noviembre, 16:30 hrs., sala 2-2.
The talk covers the long-term behaviour of measure preserving dynamical systems induced by group actions on probability spaces.
We start with an introduction in the world of classic ergodic theorems. Those latter statements can be interpreted as “laws of large numbers” from statistics applied in an abstract setting of group dynamics. Abstractly, this leads to the notion of almost-additive Banach space-valued set functions, with their normalized version converging along Folner sequences. We present the corresponding ergodic theorem and as an application, we mention the pointwise almost everywhere convergence of bounded, almost-additive processes.
Ciclos Heterodimensionais
Yuri Ki
Pontifícia Universidade Católica do Rio de Janeiro, Brasil.
Viernes 23 de noviembre, 16:30 hrs., sala 2-2.
Junto com as tangências homoclínicas, os ciclos heterodimensionais são as obstruções conhecidas da hiperbolicidade no espaço dos difeomorfismos numa variedade compacta.
A principal ferramenta no estudo dos ciclos heterodimensionais é os chamados blenders, introduzidos por Bonatti-Díaz nos anos ’90.
Nesse seminário vamos descrever os blenders e aplicá-los na construção de ciclos heterodimensionais robustos de co-índice dois.
Rigidez Geométrica de Homeomorfismos Críticos del Círculo
Pablo Guarino
Universidade de São Paulo, Brasil.
Viernes 16 de noviembre, 16:30 hrs., sala 2-2.
Hablaremos de homeomorfismos del círculo que están en el borde de los difeomorfismos. Mas explícitamente, estudiaremos homeomorfismos del círculo de clase que no son difeomorfismos, pues presentan un punto crítico (de grado impar). Nos concentraremos en el caso de número de rotación irracional de tipo limitado y mostraremos cómo se prueba la siguiente rigidez geométrica: dos homemorfismos críticos con igual número de rotación irracional de tipo limitado e igual grado en el punto crítico son conjugados por un difeomorfismo de clase .
Esto surgió como una conjetura a comienzos de los años ’80 a través de trabajos de Feigenbaum, Lanford, Rand, etc. Luego de muchas contribuciones para el caso real-analítico (de Faria-de Melo, Yampolsky, Khanin-Teplinsky) hemos conseguido extender la rigidez a todo el universo . Trabajo en colaboración con Welington de Melo (IMPA).
Atractores No Uniformemente Hiperbólicos
Pablo Carrasco
Instituto de Matemática Pura e Aplicada, Brasil.
Viernes 09 de noviembre, 16:30 hrs., sala 2-2.
La teoría de sistemas no uniformemente hiperbólicos (NUH) permite extender los resultados de la teoría clásica de hiperbolicidad a contextos donde esta última es inaplicable. Por ejemplo, en cualquier variedad de dimensión mayor o igual a dos existen sistemas NUH. A pesar de su generalidad, y sorprendentemente (o no), existen pocos ejemplos “realmente” NUH. En esta charla presentamos un ejemplo de un sistema NUH que es diferente al resto de los ejemplos conocidos. Surge de acoplar un sistema hiperbólico rápido (cuya dinámica es conocida) con el mapa estándar (cuya dinámica es desconocida). El método usado permite además obtener que el sistema es robustamente no hiperbólico (y tal vez un poco más).
Rotation Sets for Conservative Homeomorphisms on the -torus and Related Chaotic and Elliptic Regions
Fabio Tal
Universidade de São Paulo, Brasil.
Viernes 12 de octubre, 17:45 hrs., sala 2-2.
Misiurewicz and Zieman introduced in 89 the concept of rotation sets for torus homeomorphisms homotopic to the identity, a topological invariant generalizing the rotation number of orientation preserving homeomorphisms of the circle. This concept proved to be very useful in describing several features of the dynamics of such homeomorphisms. In particular, whenever the rotation set of an homeomorphism has nonempty interior (an open and dense condition in the area preserving case) the dynamics of the map must be very rich. In this work we will present, for non wandering homeomorphisms whose rotation set has nonempty interior, a topological partition of the torus into an essential chaotic region and periodic bounded topological disks. Furthermore, we show that this chaotic region is externally transitive, has an abundance of periodic points and the local rate of linear diffusion in the lift is everywhere the same. This is a joint work with A. Koropecki (UFF-Brazil)
Monodromía e Integrabilidad de Representaciones de Álgebras de Lie
Rodrigo Vargas
Universidad de Talca.
Viernes 12 de octubre, 16:30 hrs., sala 2-2.
Las representaciones integrables de un álgebra de Lie son aquellas que se obtienen por derivación de representaciones de un grupo de Lie. Introduciremos el fenómeno de no- integrabilidad, y explicaremos su relación con la monodromía de conexiones planas sobre espacios fibrados. Intentaremos hacer una exposición relativamente autocontenida, enfocándonos en ciertas representaciones no integrables asociadas a superficies de Riemann.
Non-minimally Coupled Dark Energy Models
Genly León Torres
Universidad Central Marta Abreu de Las Villas, Cuba.
Viernes 28 de septiembre, 16:30 hrs., sala 2-2.
We investigate, from the dynamical systems viewpoint, flat Friedman-Robertson-Walker models in the conformal (Einstein) frame of scalar-tensor theories of gravity (including f(R) theories through conformal transformation). Particularly we are interested in investigating the stability of de Sitter solution in this framework, which represent the current accelerating expansion phase of our universe. Also we investigate the stability of scaling solutions. Scaling late-time attractor solutions provide a hint for solving or alleviating the ‘Coincidence Problem’: why the energy densities of matter and dark energy are of the same order of magnitude nowadays?
Statistical Properties of Rational Maps
Michal Szostakiewicz
Uniwersytet Warszawski, Polonia.
Viernes 14 de septiembre, 12:00 hrs., sala 2-2.
The famous Ergodic Theorem may be viewed as a counterpart of Law of Large Numbers. It is also fruitful to study Central Limit Theorem, Exponential Decay of Correlations and Law of Iterated Logarithm for certain maps and their invariant measures. In this talk I will focus on rational maps of Riemann Sphere. In this setting it’s natural to study the class of measures called equilibrium states with Holder continuous potentials, introduced by Denker, Przytycki and Urbański.
I want to describe our recent results with Anna Zdunik and Mariusz Urbański in which we apply theory of Young’s towers and deduce aforementioned strong statistical properties in this context.
Although our methods work in complex projective spaces of any dimension, I will focus only on one-dimensional case.
I will explain some basic properties of rational maps on the Riemann Sphere from a dynamic point of view and present a list of known and new results concerning their statistical properties.
I want to focus on the (fine) inducing scheme, present an outline of proof that we can use it to apply Young’s theory. I will include a short introduction of Young’s towers for convenience.
Nuevos Métodos Variacionales para el Problema Newtoniano de -cuerpos
Ezequiel Maderna
Universidad de la República, Uruguay.
Viernes 07 de septiembre, 16:30 hrs., sala 2-2.
Desde 1998 sabemos que las curvas que minimizan la acción lagrangiana en el problema de -cuerpos evitan las colisiones en tiempos intermedios. Este resultado (debido a Marchal, Chenciner, Ferrario-Terracini) permitió probar la existencia de órbitas periódicas insospechadas, entre ellas la famosa órbita coreográfica con forma de ocho para tres cuerpos de igual masa.
En esta charla enunciaremos estimaciones Hölder para la acción mínima a tiempo libre entre dos configuraciones arbitrarias del problema general de -cuerpos y mostraremos como se deducen de ellas la existencia de soluciones KAM débiles para la ecuación de Hamilton-Jacobi. Deduciremos de las mismas estimaciones que dichas soluciones deben ser invariantes por traslaciones de los cuerpos. Combinando estos resultados con el teorema de Marchal mostraremos el siguiente teorema: Fijados valores arbitrarias de masas puntuales, y posiciones arbitrarias de las mismas, existen movimientos completamente parabólicos en el futuro (es decir tales que las velocidades de las masas tienden a cero) partiendo de las posiciones iniciales elegidas.
Si el tiempo permite discutiremos las preguntas naturales que surgen de la analogía de este desarrollo con la Teoría de Aubry-Mather para sistemas lagrangianos autónomos.
Comportamiento Ergódico Extraño en el Mundo -genérico
Martin Andersson
Universidade Federal Fluminense, Brasil.
Viernes 24 de agosto, 16:30 hrs., sala 2-2.
En este seminario se expondrán algunos temas de la teoría ergódica de sistemas genéricos. Lo más notable, en este contexto, es un resultado de la existencia en casi todo punto de promedios de Birkhoff y la sorprendente falta de medidas físicas.
Trabajo en colaboración com Flávio Abdenur.
Simetrías, Física de Partículas y el Higgs
Joel Saavedra
Instituto de Física, PUCV.
Viernes 10 de agosto, 16:00 hrs., sala 2-2.
El miércoles 4 de julio, la comunidad científica mundial, en particular la comunidad de físicos teóricos del mundo, se vio estremecido por los resultados reportados por el Centro Europeo para la Investigación Nuclear (CERN), que aseguran la existencia del bosón de Higgs o una partícula muy pero muy cercana a ella.
De paso, huelga decir que esta partícula ha sido buscada por diferentes equipos por más de la mitad de una centuria y sólo es hasta los resultados entregados recién el miércoles que tenemos indicios rigurosos de su existencia a través de los datos entregados por el Gran Colisionador de Hadrones.
En este seminario veremos la historia de la predicción, su búsqueda experimental y su justificación a través de modelos teóricos basados en simetrías.
An overview of Stochastic Dynamics
Rolando J. Biscay Lirio
Universidad de Valparaíso.
Viernes 27 de julio, 16:00 hrs., sala 2-2.
Fundamental concepts and results of the theory of random dynamical systems (RDS) are reviewed, such as cocycles, skew-product, stationary measures, invariant measures, multiplicative ergodic theorems (Lyapunov exponents), random attractors, exponential stability, random topological conjugacy, stochastic bifurcations, etc. Measure-based and path-wise approaches are distinguished. This is complemented with illustrative examples, historical remarks and critical comments.
Semi-conjugación y Casi-periodicidad
José Aliste
CMM-Universidad Andrés Bello.
Viernes 13 de julio, 16:00 hrs., sala 2-2.
Estudiamos el problema de semi-conjugación a una “rotación” irracional en un caso general de casi-periodicidad que incluye sistemas de embaldosados, homeomorfismos forzados del círculo y funciones quasi-periodicas. Daremos un resumen de los resultados clásicos de Poincaré sobre semiconjugación en el círculo y luego veremos como estos se extienden al caso casi-periodico.
Promedio a lo largo de Órbitas
Alfredo Poirier
Pontificia Universidad Católica del Perú.
Viernes 30 de marzo, 16:00 hrs., sala 2-2.
Para un sistema dinámico transitivo en un espacio métrico compacto,
mostramos una condición que implica la densidad de promedios a lo
largo de óbitas periódicas dentro de las medidas invariantes.
Mostraremos que esta condición se satisface para multiplición por un entero en el círculo y que se transmite casi sin esfuerzo a los polinomios con conjunto de Julia conexo y localmente conexo.
Low Temperature Phase Transitions in the Quadratic Family
Daniel Coronel
Pontificia Universidad Católica de Chile.
Viernes 16 de marzo, 16:00 hrs., sala 2-2.
We give the first example of a quadratic map having a phase transition after the first zero of the pressure function. General results imply that such a quadratic map necessarily satisfies the Collet-Eckmann condition, but our example satisfies the stronger Misiurewicz condition: the critical point is …
Thermodynamic Formalism for Wild Attractors
Mike Todd
University of St Andrews, Escocia.
Viernes 09 de marzo, 16:00 hrs., sala 2-2.
Thermodynamic formalism for dynamical systems gives a toolbox to study the statistical properties of the system: it can provide ergodic invariant measures, statistical limit laws etc. There have been significant developments recently in the area of non-uniformly hyperbolic.
Lyapunov exponents, non – uniform specification and applications
Krerley Oliveira
Universidade Federal de Alagoas, Brasil.
Martes 17 de enero, 12:00 hrs., sala 2-2.
Periodic orbits are main actors in dynamical systems. Despite the fact that in some setting they are extremely difficult to obtain, under a “sufficient chaotic” situation there are plenty of them. How they are distributed, plays a important role in the study of dynamical systems.
In this talk we discuss a notion of “non-uniform specification”, introduced by Saussol et al and prove a general version of the well-known “Katok´s Closing Lemma”. Given a (ergodic) invariant measure for a dynamical system with only positive Lyapunov exponents, we are able to show that almost every point is shadowed by a periodic orbit with period that growth sublinearly (or even better) with the size of the piece of orbit that you wanna shadow. We discuss some interesting applications on recurrence estimates and approximations by periodic measures. The talk will be accessible (I hope so!) to advanced Masters and Ph.D. students.
Sistemas Parcialmente Hiperbólicos, Integrabilidad y todo eso
Pablo Carrasco
Instituto de Matemática Pura e Aplicada, Brasil.
Martes 10 de enero, 12:00 hrs., sala 2-2.
En esta charla discutiremos sistemas parcialmente hiperbólicos, una
generalización de los bien conocidos sistemas hiperbólicos. Además de
presentar generalidades y ejemplos, discutiremos propiedades referentes a
la geometría de estos. Trataremos también de “recuperar” algunas
propiedades de los sistemas hiperbólicos (existencia de hojas periódicas,
expansividad, etc.).
Extensiones Simbólicas y Descomposición Dominada en Difeomorfismos de Clase
Alma Armijo Averil
LMRS, Université de Ruen, Francia & CMM-Universidad de Chile.
Viernes 06 de enero, 16:30 hrs., sala 2-2.
Estudiamos cuando un difeomorfismo de clase conservativo en superficie posee extensión simbólica o descomposición dominada, luego trataremos de extenderlo para variedades en dimensión mayor a dos.
Seminarios anteriores 2011
La segunda regla de Chargaff en Genómica
Servet Martínez
Universidad de Chile.
Lunes 05 de diciembre, 16:00 hrs., sala 2-2.
La segunda regla de Chargaff en genómica establece que la distribución de los polímeros en ambas hebras del DNA es la misma. Esta ley se ha verificado empíricamente pero no se ha dado una explicación de la misma. En este seminario explicamos esta ley basándonos en la conocida complementariedad de las bases de ambas hebras y asumiendo que las distribuciones son Gibbsianas.
Polynomial Global Product Structure
Andy Hammerlindl
IMPA, Brasil.
Viernes 02 de diciembre, 16:00 hrs., sala 2-2.
An Anosov diffeomorphism has Global Product Structure if, on the universal cover, every unstable leaf intersects every stable leaf exactly once. In the 1970s, M. Brin defined a condition called pinching for Anosov diffeomorphisms and showed that it implied Global Product Structure. Later, with A. Manning, he gave a classification of these systems, showing they are topologically conjugate to algebraic examples.
In fact, for the proof of the classification, one only needs a polynomial bound on distances involved in the Global Product Structure. Thus, the result generalizes to other cases, such as when the foliations are quasi-isometric, and can be further generalized to partially hyperbolic systems.
Sobre Límites Marítimos y Otros Conjuntos que tampoco son tan simples como los pintan
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 18 de noviembre, 16:00 hrs., sala 2-2.
Estudiamos propiedades geométricas de conjuntos equidistantes compactos dados del plano. Mostramos además como estos conjuntos pueden ser tratados como generalizaciones naturales de conjuntos clásicos.
Copos de Nieve Conformes Aleatorios
Jonathan Conejeros
Pontificia Universidad Católica de Chile.
Viernes 03 de junio, 16:30 hrs., sala 2-2.
Se puso de manifiesto durante las últimas décadas que las configuraciones extremales en muchos problemas importantes en análisis complejo, tienen complicadas estructuras fractales. Como por ejemplo se puede considerar el problema de los coeficientes para funciones univalentes, como la Conjetura de Bieberbach. Nosotros en esta charla abordaremos el espectro medio integral universal sobre dominios simplemente conexos del plano complejo, y buscaremos una respuesta al problema de buscar una clase de fractales que resuelvan el problema maximal. Para eso, introduciremos los fractales llamados copos de nieve conformes aleatorios y probaremos que se puede encontrar la solución al problema de maximalidad en esta clase de fractales.
Tópicos en Gap – Labelling
Mauricio Allendes Cerda
Pontificia Universidad Católica de Chile.
Viernes 27 de mayo, 16:00 hrs., sala 2-2.
En esta charla estudiamos una aplicación de embaldosados (Tiling) en física matemática. Comenzamos revisando ejemplos que ilustren lo que consideraremos una función de
Gap – Labelling. Luego introduciremos un operador actuando en un sólido cuasi cristal. Nuestra intención es poder decir algo al espectro de A. Utilizando el método de celdas de Voronoi, asociaremos un embaldosado al patrón de difracción del cuasi cristal y utilizaremos el método del lazo estrecho (Tight – Binding) para aproximar el operador, por un operador acotado , y pasar así de un problema continuo a un problema discreto. Bajo ciertas hipótesis de regularidad sobre , se puede asumir que este operador pertenezca a una -álgebra, , asociada al embaldosado . De este modo, por medio de una traza definida en esta -álgebra, podemos conseguir una función de Gap – Labelling para el operador una vez que hayamos asociado un grupo de Grothendieck a .
Si el tiempo nos acompaña, hablaremos de la conjetura del Gap – Labelling formulada por Jean Bellissard en el año 2000 que conjetura los valores explícitos que alcanza cierta función de Gap – Labelling.
La Medida de Máxima Entropía detecta la Hiperbolicidad No Uniforme
Juan Rivera-Letelier
Pontificia Universidad Católica de Chile.
Viernes 20 de mayo, 16:00 hrs., sala 2-2.
A mediados de los años 1990, Carleson, Jones y Yoccoz demostraron que para un polinomio complejo hay una relación estrecha entre las propiedades geométricas de la cuenca de atracción del infinito y las propiedades de hiperbolicidad del polinomio: la cuenca de atracción del infinito es un dominio de John sí y sólo si el polinomio es semi-hiperbólico. Unos pocos años después, Graczyk, Przytycki y Smirnov demostraron que la cuenca de atracción del infinito es un dominio de Hölder sí y sólo si el polinomio satisface una forma más débil de hiperbolicidad, conocida como la condición de Collet – Eckmann topológica.
Demostraremos que cada una de estas propiedades, que la cuenca de atracción del infinito sea un dominio de John o de Hölder, se puede caracterizar en términos de la medida de máxima entropía.
Phase Transition for a Globally Coupled Chaotic Interval Maps
Jean-Baptiste Bardet
CMM- Universidad de Chile & Université de Rouen, Francia.
Viernes 13 de mayo, 16:00 hrs., sala 2-2.
In a joint work with Gerhard Keller and Roland Zweimüller, we introduce a model of globally coupled chaotic interval maps for which, the self-consistent Perron – Frobenius operator, describing the infinite-size dynamics exhibits a bifurcation from a unique stable equilibrium to the coexistence of two stable and one unstable equilibrium, whereas all finite-size dynamics remain chaotic.
Formalismo Termodinámico Casi Aditivo
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 06 de mayo, 16:00 hrs., sala 2-2.
Generalizando resultados clásicos en formalismo termodinámico,
definimos la presión de una sucesión de funciones casi aditivas en
espacios simbólicos no compactos. Probaremos el principio variacional.
Bajo hipótesis adicionales probaremos la existencia de medidas de Gibbs y
de estados de equilibrio. Mostraremos aplicaciones en teoría de la
dimensión y en exponentes de Lyapunov maximales del producto de matrices
(trabajo conjunto con Yuki Yayama).
Organizando el Caos
Pedro Aguirre
University of Bristol, Reino Unido.
Viernes 15 de abril, 16:00 hrs., sala 2-2.
Comportamientos caóticos o impredecibles aparecen de forma natural en muchos sistemas dinámicos aplicados: propagación de impulsos nerviosos en neuronas, sistemas de comunicaciones, reacciones electroquímicas y procesos de oxidación, cadenas alimentarias en sistemas depredador-presa, dinámica de láser, en las icónicas ecuaciones de Lorenz en meteorología, etc.
En esta charla, nos enfocamos en la bifurcación homoclínica de Shilnikov; este es el ejemplo más sencillo de creación de caos – también llamado “Caos de Shilnikov”- a partir de un fenómeno de codimensión uno en un campo vectorial tridimensional. Bajo ciertas condiciones, la existencia de una órbita homoclínica a un punto de equilibrio de tipo silla-foco, induce una dinámica caótica gracias a la presencia de una cantidad infinita de órbitas periódicas de tipo silla en una vecindad tubular de la órbita homoclínica. A pesar de que las bifurcaciones de tipo Shilnikov son, en cierta manera, bien conocidas, su estudio ha sido efectuado históricamente en base a reducciones a mapeos bidimensionales cerca del punto de equilibrio y de los objetos unidimensionales (la órbita homoclínica, ciclos límites) que componen la dinámica.
La pregunta clave ahora es: Como estos objetos y sus respectivas variedades invariantes bidimensionales cambian durante la bifurcación para reorganizar la dinámica del espacio de fase y el caos de Shilnikov.
Equidistribución de Puntos de Hecke en el Módulo Supersingular
Ricardo Menares
Pontificia Universidad Católica de Chile.
Viernes 08 de abril, 16:00 hrs., sala 2-2.
Dado un primo , consideramos el conjunto (finito) de curvas elípticas supersingulares en característica . El álgebra de Hecke actúa en este conjunto por isogenias. Desde el punto de vista dinámico, tiene interés calcular la frecuencia asintótica con la que una curva elíptica supersingular visita otra curva del mismo tipo bajo la acción del álgebra de Hecke. El resultado es que la frecuencia es la misma, sin importar el par de curvas que se ha elegido.
En esta charla, explicaremos todas las palabras claves. Si el tiempo lo permite, mostraremos como hacer este calculo usando estimaciones sobre los coeficientes de Fourier de formas modulares cuspidales.
Seminarios anteriores 2010
On the abundance of Physical Measures for Partially Hyperbolic Dynamics
Vitor Araujo
Universidade Federal do Rio de Janeiro, Brasil.
Viernes 15 de octubre, 16:00 hrs., sala 2-2.
We show that each strongly partially hyperbolic diffeomorphim, with one-dimensional subbundles and whose unstable foliation is smooth and minimal, either admits a unique physical measure with full basin, or is close to a -open subset of partially hyperbolic diffeomorphism with unique physical measures with full basin in the whole manifold. Our methods apply to both conservative and dissipative perturbations. Two examples are presented: the time-one map of the geodesic flow on surfaces of constant negative curvature, and a Derived from Anosov example on the -torus.
The Siegel Center Problem in Ultrametric Dynamics
Karl-Olof Lindahl
Linnaeus University, Suecia.
Viernes 01 de octubre, 16:00 hrs., sala 2-2.
We consider the “Siegel center problem” (i.e. local linearization of power series about indifferent fixed points) for ultrametric fields. It is known since a paper of Herman and Yoccoz in 1981 that Siegel’s linearization theorem for the complex field case is true also for ultrametric fields. They also showed that there exist examples in fields of prime characteristics where the Siegel, nor the weaker Brjuno condition is satisfied, imposing a problem of small divisors. However, until recently, it was still an open question whether these small divisors yield divergence of the corresponding conjugacy or not. In fact, it has been shown that the same multiplier may yield divergence of the conjugacy for some analytic functions and convergence for others. In other words, in the ultrametric setting (over fields of prime characteristics) the linearizability at an indifferent fixed point cannot be determined solely in terms of the multiplier. A complete solution of the problem is still to be found.
Descomposición Ergódica y Levantamiento de Medidas
Vilton Pinheiro
Universidade Federal Da Bahia, Brasil.
Viernes 24 de septiembre, 16:00 hrs., sala 2-2.
Optimization and Protection of Arithmetic Algorithms on Low Genus Hyperelliptic Curves
Rodrigo Abarzúa
Universidad de Santiago de Chile.
Viernes 10 de septiembre, 16:00 hrs., sala 2-2.
El Teorema de Birkhoff Poincaré
Patricia Cirilo
IMPA, Brasil.
Viernes 03 de septiembre, 16:15 hrs., sala 2-2.
De las Tasas de Mezcla a los Tiempos de Recurrencia
Jose F. Alves
Universidade do Porto, Portugal.
Viernes 03 de septiembre, 17:30 hrs., sala 2-2.
Estabilidad y Caos
Vanderlei Horita
Universidade Estadual Paulista, Brasil.
Viernes 27 de agosto, 16:00 hrs., sala 2-2.
Observable Measures
Leonora Castigeras
Universidad de la República, Uruguay.
Viernes 30 de julio, 16:00 hrs., sala 2-2.
We define the observable invariant probabilities as a slight generalization of the physical measures, such that the statistical meaning of these last is not lost.
Precisely: for Lebesgue a.e. initial condition, the set of observable measures attracts the sequence of time averages when time goes to infinite. Besides is the minimal weak*-compact set of probabilities that has this property of attraction Lebesgue a.e.
In other words, observable measures are necessary and sufficient to describe the future asymptotic behavior of the statistics of Lebesgue almost all orbit.
They are mostly interesting if the system is not conservative, that is, f does not preserve any measure m equivalent to Lebesgue. (If it did, the observable measures are just all the ergodic components of m).
We prove that any continuous dynamical system on a compact Riemannian manifold, has at least one observable probability. Nevertheless, observable measures are not necessarily ergodic,and the set of is not necessarily convex.
As an example, if f is expanding on the circle, the set of observable measures are equilibrium states for . So, all observable measures in this example, satisfy the Pesin’s formula of the entropy, even if they are not necessarily SRB, i.e. they are not necessarily absolutely continuous respect to Lebesgue. This is the case of generic expanding maps in the circle which are not plus Hölder.
For any continuous map f, include all the physical measures if these last exist, and is finite or countable infinite only if Lebesgue a.e. is attracted to a physical measure. If so, the set is just the weak*-closure of the physical measures.
Soluciones Continuas para Ecuaciones Cohomológicas
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 09 de julio, 16:00 hrs., sala 2-2.
Linearización de Difeomorfismos Parcialmente Hiperbólicos en Dimensión 3
Ali Tahzibi
Universidade de São Paulo, Brasil.
Viernes 02 de julio, 16:00 hrs., sala 2-2.
El Principio de Grandes Desvíos para Estados Periódicos en los Sistemas de Spin Cuánticos
Henri Comman
Pontificia Universidad Católica de Valparaíso.
Viernes 04 de junio, 16:00 hrs., sala 2-2.
Probamos un principio de grandes desvíos para distribuciones ponderadas de estados periódicos (más precisamente del promedio a lo largo del período). La funcón de tasa está dada de forma similar al caso de los sistemas dinámicos clásicos, vale decir por la entropía (promedia). Lo
anterior permite obtener una versión cuántica de los resultados clásicos de Lanford acerca los grandes desvíos para Hamiltoniano “periodizado”.Otra consecuencia es un reforzamiento de un resultado antiguo de Israel sobre la posibilidad de aproximar débilmente y en entropía cualquier estado invariante por estados de equilibrio de interacciones “short range”.
La Geometría de la Ecuación de Maurer-Cartan
Cristian Ortiz
IMPA, Brasil.
Viernes 14 de mayo, 16:00 hrs., sala 2-2.
En este seminario estudiaremos la conocida ecuación de Maurer-Cartan en un grupo de Lie desde el punto de vista de las álgebras de Lie graduadas diferenciales. Explicaré como este marco más general puede ser usado para estudiar diversos problemas en geometria simpléctica.
Medidas Invariantes para Embaldosados de Sustitución No Primitivas
María Isabel Cortez
Universidad de Santiago de Chile.
Viernes 07 mayo, 16:00 hrs., sala 2-2.
En esta charla abordaremos conceptos generales de los sistemas de embaldosados, y en particular, de aquellos de sustitución. Describiremos como son las medidas invariantes (finitas e infinitas) de los sistemas de embaldosados que se obtienen a partir de sustituciones no primitivas. Esto está incluido en un trabajo en conjunto con B. Solomyak.
Análisis Multifractal de Promedios de Birkhoff
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 30 de abril, 16:00 hrs., sala 2-2.
Convergencia Rápida a la Densidad para Embaldosados Autosimilares en Dimensión 2
Álvaro Daniel Coronel
Pontificia Universidad Católica de Chile.
Viernes 23 de abril, 16:00 hrs., sala 2-2.
Esta charla trata sobre embaldosados autosimilares en dimensión 2. Consideramos el número de ocurrencia de una baldosa dada en cualquier dominio acotado por una curva de Jordan. Para una clase grande de embaldosados auto-similares, que incluye los ejemplos más conocidos, damos estimaciones de la oscilación de este número de ocurrencia alrededor de un promedio, el cual depende solo de la curva de Jordan.
Fabricando una Órbita Densa en el Espacio de Órdenes del Grupo Libre en 2 Generadores
Cristóbal Rivas
Universidad de Chile.
Viernes 16 de abril, 16:00 hrs., sala 2-2.
Probamos que la accion natural del grupo libre en su espacio de ordenes, , tiene una orbita densa. Como aplicacion se re-muestra que no tiene ordenes aislados.
Ecuaciones Cohomológicas: Un Encuentro entre Sistemas Dinámicos y EDP’s
Alejandro Kocsard
Universidade Federal Fluminense, Brasil.
Viernes 09 de abril, 12:00 hrs., sala Aula.
Dinámica Global de Redes Neuronales de Tipo Integrate and Fire
Pierre Guiraud
Universidad de Valparaíso.
Viernes 26 de marzo, 16:00 hrs., sala 2-2.
El modelo “Leaky Integrate and Fire” (LIF) es un modelo muy popular de la excitabilidad neuronal. Su popularidad se debe a su formulación simple que permite realizar simulaciones numéricas de redes neuronales a un bajo costo computacional, así como establecer resultados rigurosos desde un punto vista matemático. A pesar de esto, la dinámica global de tales redes es bastante desconocida, ya que la mayoría de los estudios se concentran en soluciones particulares del modelo. En esta charla se presentará un análisis de la dinámica global de una red neuronal de tipo LIF con interacciones fuertes entre neuronas. Se verá cómo el estudio de una aplicación de retorno de Poincaré permite demostrar la existencia de una dinámica compleja presentando ciclos límites y/o dependencia sensible al estado inicial.
Es bien conocido como la persistencia de atractores extraños están asociados a la presencia de puntos homoclínicos tangenciales. En particular, en el caso de campos vectoriales, la existencia de dichos atractores se sigue ya en dimensión tres de la presencia de configuraciones homoclínicas de tipo Shil´nikov Sin embargo estas configuraciones no son fáciles de detectar en familias de campos. Es por ello de gran utilidad conocer singularidades de baja codimensión desde la que se desplieguen genéricamente estas u otras configuraciones que impliquen una dinámica observable, interesante y complicada. Durante la charla se aplicarán los resultados y conclusiones al caso particular de los sistemas acoplados y, en particular, al sistema que resulta de acoplar por difusión lineal dos Brusselator.
En la medida en la que procesos simples interactúan para dar lugar a procesos más complejos, los resultados son de interés a la hora de establecer posibles jerarquías y rutas hacia la complejidad, por ejemplo, en las redes celulares.
Complejidad Dinámica en Sistemas Acoplados
José Ángel Rodríguez
Universidad de Oviedo, España.
Jueves 18 de marzo, 16:00 hrs., sala 2-2.
Es bien conocido como la persistencia de atractores extraños están asociados a la presencia de puntos homoclínicos tangenciales. En particular, en el caso de campos vectoriales, la existencia de dichos atractores se sigue ya en dimensión tres de la presencia de configuraciones homoclínicas de tipo Shil´nikov Sin embargo estas configuraciones no son fáciles de detectar en familias de campos. Es por ello de gran utilidad conocer singularidades de baja codimensión desde la que se desplieguen genéricamente estas u otras configuraciones que impliquen una dinámica observable, interesante y complicada. Durante la charla se aplicarán los resultados y conclusiones al caso particular de los sistemas acoplados y, en particular, al sistema que resulta de acoplar por difusión lineal dos Brusselator.
En la medida en la que procesos simples interactúan para dar lugar a procesos más complejos, los resultados son de interés a la hora de establecer posibles jerarquías y rutas hacia la complejidad, por ejemplo, en las redes celulares.
Sistemas Dinámicos y Cadenas de Markov: Casos Clásico y Cuántico
Stephane Attal
Université de Lyon 1, Francia.
Viernes 12 de marzo, 16:00 hrs., sala 2-2.
Seminarios anteriores 2009
Dominios Errantes y Conjuntos de Julia Algebráicos
Eugenio Trucco
Pontificia Universidad Católica de Chile.
Viernes 03 de julio, 16:00 hrs., sala 2-2.
Dado un polinomio con coeficientes en , la completación del cuerpo de series formales de Puiseux, estudiaremos la acción de , como sistema dinámico, en la linea de Berkovich asociada a .
Probaremos que toda componente errante del conjunto de Fatou está contenida en la cuenca de atracción de una órbita periódica. Mostraremos que la parte no clásica del conjunto de Julia de consiste de un numero finito de grandes órbitas de puntos periódicos. Además, daremos una caracterización de los polinomios cuyo conjunto de Julia es algebraico.
Dimension Theory of Cantor Series
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 26 de junio, 16:00 hrs., sala 2-2.
Cantor Series are a generalization of the base “b” expansion of a real number to the case in which one has a sequence of bases . In this talk we compute the Hausdorff dimension of the set of points for which the frequencies of the digits in the Cantor series expansion is given. We stress that the base of the Cantor series can be any sequences of positive integers. This is joint work with Bartlomiej Skorulski.
Nilsequences and a Structure Theorem for Topological Dynamical Systems
Alejandro Maass
Universidad de Chile.
Viernes 19 de junio, 16:00 hrs., sala 2-2.
We characterize inverse limits of nilsystems in topological dynamics, via a structure theorem for topological dynamical systems that is an analog of the structure theorem for measure preserving systems. We provide two applications of the structure. The first is to nilsequences, which have played an important role in recent developments in ergodic theory and additive combinatorics; we give a characterization that detects if a given sequence is a nilsequence by only testing properties locally, meaning on finite intervals. The second application is the construction of the maximal nilfactor of any order in a distal minimal topological dynamical system. We show that this factor can be defined via a certain generalization of the regionally proximal relation that is used to produce the maximal equicontinuous factor and corresponds to the case of order 1.
(*) N.d.E. Trabajo conjunto con Bernard Host y Bryna Kra.
Estudio Dinámico de Métodos Iterativos de Alto Orden de Convergencia
Sergio Plaza
Universidad de Santiago de Chile.
Viernes 12 de junio, 16:00 hrs., sala 2-2.
En esta conferencia, analizaremos parte de la dinámica de una familia de métodos iterativos para encontrar raíces de ecuaciones no lineales (trabajo en conjunto con Natalia Romero (Universidad de la Rioja, España) y Gerardo Honorato (USACH).
On the Hausdorff Dimension Spectrum for Characteristic Lyapunov Exponents for Iteration of Rational Maps on the Riemann Sphere
Feliks Przytycki
IMPAN, Polonia.
Viernes 05 de junio, 16:30 hrs., sala 2-2.
I will prove that this spectrum is a Legendre transform of the geometric pressure, function i.e. of . I will discuss also Lyapunov irregular points. This generalizes known results for hyperbolic rational maps to all rational maps. These are results obtained jointly with Katrin Gelfert and Michal Rams.
Campos Vectoriales Polinomiales con Jacobiano Nilpotente
Álvaro Castañeda
Universidad de Santiago de Chile.
Viernes 05 de junio, 15:15 hrs., sala 2-2.
En esta exposición consideraremos una clase especial de campos vectoriales polinomiales.
Para un número real negativo y un entero positivo , denotamos por el conjunto consistente de los campos polinomiales en de la forma donde es la aplicación identidad y es un campo vectorial con matriz Jacobiana nilpotente. Motivados por la conjetura de Markus Yamabe que data del año 1960, estudiamos la dinámica del sistema .
Conjuntos de Julia para el Método de -Schroeder
Gerardo Honorato
Universidad de Santiago de Chile.
Viernes 29 de mayo, 16:00 hrs., sala 2-2.
En esta exposición estudiamos los aspectos dinámicos de un algoritmo para encontrar raíces de polinomios complejos que llamamos método de – Schroeder. Este tiene su origen en los trabajos de Ernst Schroeder que datan de 1870 y es presentado por T. Pomentale en 1971. El método – Schroeder resulta ser una generalización natural del método de Newton para raíces múltiples, así como el método de Koenig lo es para el clásico método de Newton. Centraremos la presentación en describir la naturaleza de los puntos fijos y el comportamiento en el conjunto de Julia de la aplicación racional -Schroeder aplicada a polinomios cúbicos.
Cómo Ordenar Trenzas
Andrés Navas
Universidad de Santiago de Chile.
Viernes 15 de mayo, 16:00 hrs., sala 2-2.
Durante los años 90, la teoría de los grupos de trenzas de Artin se vio revolucionada por el descubrimiento (por parte de P. Dehornoy) de una relación de orden total e invariante a izquierda. Si bien la prueba original de este resultado utiliza elementos sofisticados de lógica matemática y álgebra, W. Thurston esbozó posteriormente un argumento geométrico basado en los trabajos de Nielsen. De esta manera se obtienen muchos órdenes en el grupo de trenzas, uno de los cuales coincide con el de Dehornoy.
En esta charla se discutirán propiedades finas de los órdenes de Nielsen -Thurston. Por ejemplo, se mostrará que estos órdenes son “irreconocibles” a partir de cualquier familia finita de desigualdades. De manera sorprendente, las demostraciones reposan sobre ideas dinámicas.
Los resultados a presentar han sido obtenidos recientemente en colaboración con B. Wiest, de la Univ. de Rennes 1.
Medidas Conformes y Decaimiento Exponencial de Correlaciones para Sistemas de Cubrimiento con Pesos
Irene Inoquio
Universidad Católica del Norte.
Viernes 08 de mayo, 16:00 hrs., sala 2-2.
Esta exposición está basada sobre el artículo de Liverani, Saussol and Vaienti en Ergodic Theory 1998, donde para una clase grande de aplicaciones monótonas por pedazos sobre un espacio totalmente ordenando compacto se construye medidas conformes y una tasa exponencial mixing asociado a un estado de equilibrio. El método está basado sobre el estudio del operador Perrón Frobenius y usando una apropiada métrica de Hilbert y todo esto sin argumento de compacidad.
Involuciones en Cuerpos con Asas
Ruben Hidalgo
Universidad Técnica Federico Santa María.
Viernes 24 de abril, 16:00 hrs., sala 2-2.
Sean el disco cerrado unitario y el circulo unitario. Un cuerpo con asas de género (respectivamente, de género ) es una variedad topológica homeomorfa a la suma conexa de copias de (respectivamente, a la bola cerrada unitaria -dimensional). El interior de posee muchas estructuras hiperbólicas, cada una de ellas es producida por un grupo Kleiniano isomorfo a grupo libre de rango . Si denota la región de discontinuidad de (que puede ser vacío), entonces es llamada el borde conformal de tal estructura. Aquellas estructuras hiperbólicas para las cuales cubre todo el borde topológico de son producidas exactamente cuando es un grupo de Schottky; en cuyo caso decimos que induce una estructura de Schottky en .
Sea un cuerpo con asas con alguna estructura de Schottky. Un automorfismo conformal (respectivamente, automorfismo anticonformal) es un homeomorfismo cuya restricción al interior de es una isometría para la estructura hiperbólica correspondiente. Un automorfismo conformal (respectivamente, anticonformal) de orden es llamada una involución conformal (respectivamente, involución anticonformal).
En esta charla presentaremos algunos resultados de clasificación y puntos fijos de involuciones conformales/anticonformales en cuerpos con asas con estructuras de Schottky.
Estimating the Entropy of a Shift of Finite Type with Probabilistic Methods
Ronnie Pavlov
Universidad de British Columbia, Canada.
Viernes 17 de abril, 16:00 hrs., sala 2-2.
In symbolic dynamics, a shift of finite type (or SFT) is the set of all ways to assign elements from a finite alphabet A to all sites of , subject to rules about which elements of A are allowed to appear next to each other.
The (topological) entropy of any Z SFT is easily computable (it is the log of an algebraic number). However, for , the situation becomes more complex. There are in fact only a few nontrivial examples of Z2 SFTs whose entropies have explicit closed forms.
For the Z2 golden mean shift (for which no explicit closed form for the entropy is known), we give a sequence of approximations to the entropy which converge at an exponential rate. This implies that this entropy is computable in polynomial time.
Seminarios anteriores 2008
Radiación de Hawking con Solitones
Mónica García Ñustes
Instituto Venezolano de Investigaciones Científicas, Venezuela.
Viernes 19 de diciembre, 16:00 hrs., sala 2-2.
Clásicamente, la gravitación es tan poderosa alrededor de un agujero negro que nada, ni siquiera la radiación puede escapar de él. Sin embargo, S. Hawking mostró que los efectos cuánticos permitían que los agujeros negros emitieran radiación. Una visión simplificada de este proceso es que las fluctuaciones del vacío causan que un par partícula-antipartícula aparezcan cerca del horizonte de eventos. Una partícula cae dentro del agujero negro mientras la otra escapa. Para un observador externo, el proceso aparece como si escapara una partícula del agujero negro.
En el presente seminario, mostraremos que la creación de un par de solitones kink-antikink cerca de una barrera de potencial, a través de inestabilidades en los modos internos del solitón, puede ser seguida por el escape de un kink en un proceso análogo a la radiación de Hawking. Estos resultados tienen importantes implicaciones en un contexto más amplio incluyendo resonancia estocástica y sistemas tipo ratchet. Adicionalmente, se discute la posibilidad de observar el fenómeno en sistemas de materia condensada.
Conjetura de Markus Yamabe para Campos Vectoriales Polinomiales en
Álvaro Castañeda
Universidad de Santiago de Chile.
Viernes 05 de diciembre, 16:00 hrs., sala 2-2.
CMY (Conjetura Markus-Yamabe, 1960) Sea un campo vectorial de clase tal que para cualquier , el Jacobiano de en tiene todos los autovalores con parte real negativa. Si , entonces es un atractor global del sistema .
Daremos la construcción de la familia de campos vectoriales polinomiales que satisfacen la hipótesis de Markus Yamabe y que tienen ó́rbitas que escapan al infinito para dimensión , dada por A. Cima, A. Gasull y F. Mañosas. Luego haremos la extensión de este trabajo, y finalmente mostraremos una familia de campos polinomiales homogéneos que tienen al origen como atractor global.
Dinámica del Método de Schroder
Gerardo Honorato
Universidad de Santiago de Chile.
Viernes 28 de noviembre, 16:00 hrs., sala 2-2.
En esta charla presentamos un algoritmo para encontrar raíces de polinomios complejos conocido como método de Schroder. Este tiene su origen en los trabajos
de Ernst Schroder que datan de 1870.
Del punto de vista numérico, este método es más efectivo para polinomios con raíces múltiples que el método de Newton – Raphson. Aunque a partir del método de Newton – Raphson es posible derivar muchos resultados para el método de Schroder, estos dos métodos son dinámicamente muy disímiles. En efecto, presentamos un ejemplo para el cual el método de Schroder aplicado a un polinomio, tiene conjunto de Julia disconexo.
Dimension of Equilibrium Measures
Christophe Dupont
Université de Paris 11, Francia.
Viernes 21 de noviembre, 16:00 hrs., sala 2-2.
The seminar will deal with holomorphic dynamical systems. We shall focus on the endomorphisms of the complex projective spaces , for . Classical results assert that these mappings have a unique mesure of maximal entropy mu, the so-called equilibrium measure. A natural question is to determine the Hausdorff dimension of mu (it gives in particular a bound from below for the dimension of its support). When , R. Mané proved that the dimension of mu is given by the logarithm of the degree of f over the Lyapounov exponent of mu. That beautiful formula relies on the fact that a rational fraction is a conformal mapping. We investigate here the case , the endomorphisms in that context are no more conformal. We will actually present a lower bound for the Hausdorff dimension of mu, that estimate being sharp in view of a generalized Mané’s formula.
La Entropía para Acciones de Grupos en el Círculo
Eduardo Jorquera
Universidad de Chile.
Viernes 14 de noviembre, 16:00 hrs., sala 2-2.
En esta exposición consideraremos un grupo finitamente generado de homeomorfismos del círculo, definiremos de manera natural la entropía y el conjunto de puntos no errantes para la acción de este grupo generalizando la definición clásica para una transformación, y nuestro objetivo será establecer bajo que hipótesis algebraica o de regularidad tendremos la igualdad entre la entropía de la acción en todo el círculo con la entropía de la acción en el conjunto de puntos no errantes tal como se tiene en el caso clásico de una transformación.
Sobre la Estabilidad Estocástica en Sistemas Dinámicos
Vitor Araujo
Universidade Federal Do Río de Janeiro, Brasil.
Viernes 31 de octubre, 16:00 hrs., sala 2-2.
Se presentará la noción de estabilidad estocástica para sistemas dinámicos discretos y algunos ejemplos de sistemas estocásticamente estables, juntamente con las principales ideas de la demostración de estabilidad estocástica.
Sobre Embaldosados y Sistemas Dinámicos
María Isabel Cortez
Universidad de Santiago de Chile.
Viernes 24 de octubre, 16:00 hrs., sala 2-2.
Un embaldosado (tiling) del plano es una decomposición numerable de en conjuntos cerrados que sólo se tocan en los bordes. Tal vez el ejemplo más clásico sea el tiling de Penrose.
En esta charla veremos ejemplos, formas simples de construcción, e introduciremos el concepto de sistema dinámico de embaldosados.
La Entropía Topológica como Medida del Desorden de un Sistema Dinámico y su Cálculo en Sistemas Simples
Rafael Labarca
Universidad de Santiago de Chile.
Viernes 17 de octubre, 16:00 hrs., sala 2-2.
Lyapunov Spectra for Multimodal Maps
Mike Todd
Universidade do Porto, Portugal.
Viernes 26 de septiembre, 16:00 hrs., sala 2-2.
A dynamical system can be broken down into sets with the same asymptotic growth. Analysis of these sets provides a characterization of the system. In this talk I will give recent results on the analysis of such sets for multimodal maps of the interval. I will focus on the interesting way these sets change when we look at maps which are less and less hyperbolic.
Un Closing Lemma para Endomorfismos
Martín Sambarino
Universidad de la República, Uruguay.
Jueves 25 de septiembre, 16:00 hrs., sala 2-2.
Free Smooth -Actions on the Three Torus Dimensional
Richard Urzúa Luz
Universidad Católica del Norte.
Viernes 12 de septiembre, 17:00 hrs., sala 2-2.
We show that for a spectrallly unitary -action on the first homology group of the torus (i.e., 1 is an eigenvalue of for each ), there exists a free -action by real analytic diffeomorphisms on whose induced -action on is .
Grandes Desvíos en Sistemas Dinámicos
Juan Rivera-Letelier
Pontificia Universidad Católica de Chile.
Viernes 12 de septiembre, 16:00 hrs., sala 2-2.
En su forma más simple, la teoría de grandes desvíos es un refinamiento de la ley de los grandes números. En sistemas dinámicos que tienen alguna forma de hiperbolicidad, la teoría de grandes desvíos se puede aplicar para obtener diversos refinamientos del teorema ergódico de Birkhoff. El propósito de esta charla es discutir algunos resultados recientes de grandes desvíos en sistemas dinámicos, obtenidos en colaboración con H. Comman.
Cotas Inferiores para Discriminantes de Cuerpo de Números y Conductores de Artin
Amalia Pizarro
Universidad de Chile.
Viernes 05 de septiembre, 16:00 hrs., sala 2-2.
Consideremos una extensión Galoisiana K/Q con grupo de Galois G. En esta charla, se mostrará un método para determinar cotas inferiores para Discriminantes de cuerpos de números y conductores de Artin, asociados a cada representación de G. Parte de este método de basa en determinar una fórmula explícita que relaciona el conductor con la L-función de Artin asociada a la representación.
Equilibrium States
Marcelo Viana
IMPA, Brasil.
Jueves 28 de agosto, 16:00 hrs., sala 2-2.
Fractional Dimensions
Nuno Luzia
Instituto Superior Técnico de Lisboa, Portugal.
Viernes 22 de agosto, 16:00 hrs., sala 2-2.
Fractals type sets appear naturally as invariants sets of a dynamical system (iterative process). These sets possess non-integer dimension, fractional dimension. We say how to compute the Hausdorff dimension for a class of conformal (self-similar) fractal sets, e.g. middle-third Cantor set, Sierpinski carpet and gasket, Menger sponge, via the well-known Moran formula. Then we say how these formulas extend to the more complicated non-conformal scenario which apply to sets invariant under dynamical systems which possess two or more different rates of expansion (Lyapunov exponents).
Ergodic Theory of Dinamically Regular Trascendental Functions
Mariuz Urbanski
University of North Texas, USA.
Jueves 14 de agosto, 16:00 hrs., sala 2-2.
In the present paper we provide a systematic account of the thermodynamic formalism for dynamically regular functions and tame potentials, i.e. of the form $-t log|f’|_\sg+h$, where $t>\rho/\a$ ($\rho$ being the order of the transcendental function and $\a$ coming from the derivative growth condition) and is a balanced weakly Hölder function. The added term is not only just that we can do it, in fact, it naturally emerges from needs of multifractal analysis of Gibbs measures. The thermodynamic formalism presented in this talk is based on change of Riemannian metric, growth derivative condition, and the use of Nevanlina’s theory, this last one to get upper bounds for Perron-Frobeniusoperators. The emerging picture is nearly as complete as in the case of rational functions of Riemann sphere. We prove variational principle, the existence and uniqueness of Gibbs states (with the definition appropriately adapted for the transcendental case) and equilibrium states of tame potentials, and that they coincide. There is also given a detailed description of spectral and asymptotic properties (spectral gap, Ionescu-Tulcea and Marinescu Inequality) of Perron-Frobenius operators, and their stochastic consequences such as the Central Limit Theorem, K-mixing, and exponential decay of correlations.
.
Thermodynamic formalism being interesting itself, we have also applied it to study the fractal structure of Julia sets. In particular, Bowen’s formula is established identifying the Hausdorff dimension of the radial Julia set as the zero of the pressure function $t\mapsto\P(-t log|f’|_\sg)$, and the real-analytic dependence of the Hausdorff dimension on a reference parameter was shown. We want to stress that although Bowen’s formula describes the Hausdorff dimension of the radial Julia set, the definition of pressure does not involve the concept of radial Julia sets at all. We will examine the finer fractal structure of the radial Julia sets by discussing the multifractal analysis of Gibbs states of tame potentials. Here again, the theory turns out to be as complete as for hyperbolic rational functions. Indeed, the multifractal spectrum function is proved to be convex, real-analytic and to be the Legendre transform conjugate to the temperature function. We can go even further, by showing that for a balanced deformation analytic family, the multifractal spectrum function is real-analytic also with respect to the parameter.
Dinámica de Funciones Racionales Cuadráticas
Jan Kiwi
Pontificia Universidad Católica de Chile.
Viernes 08 de agosto, 16:00 hrs., sala 2-2.
Difeomorfismos Parcialmente Hiperbólicos
Fabián Contreras
Universidad Católica del Norte.
Jueves 24 de julio, 16:00 hrs., sala 2-2.
En esta sesión introduciremos los sistemas parcialmente hiperbólicos. Veremos algunos ejemplos, y propiedades de estos sistemas: Hölder continuidad de las distribuciones, estabilidad de los sistemas parcialmente hiperbólicos y construcción de las foliaciones estables e inestables.
Dimensions of Compact Invariant Sets of Some Expanding Maps
Yuki Yayama
CMM, Universidad de Chile.
Viernes 04 de julio, 16:00 hrs., sala 2-2.
We study the Hausdorff dimension and measures of full Hausdorff dimension for a compact invariant set of an expanding nonconformal map on the torus given by an integer-valued diagonal matrix. The Hausdorff dimension of a “general Sierpinski carpet” was found by Mc Mullen and Bedford and the uniqueness of the measure of full Hausdorff dimension was proved by Kenyon and Peres. We extend these results by using compensation functions to study a general Sierpinski carpet represented by a shift of finite type. We give some conditions under which a general Sierpinski carpet has a unique measure of full Hausdorff dimension and study the properties of the unique measure.
Dinámica Simbólica de dos Aplicaciones Caóticas Acopladas: Desde el régimen de desacoplado hasta la sincronización
Pierre Guiraud
Universidad de Valparaíso.
Viernes 27 de junio, 16:00 hrs., sala 2-2.
En esta charla, se presenta un estudio de la dinámica acotada de dos aplicaciones caóticas acopladas en todo el rango de acoplamiento, desde el régimen desacoplado donde la entropía es máxima hasta el régimen de sincronización donde la entropía es mínima.
Gracias a una formulación del problema en términos de dinámica simbólica, se obtienen estimaciones del conjuntos de los códigos, que describen como la dinámica esta gradualmente afectada por el aumento del acoplamiento.
Las estimaciones se traducen en acotas de la entropía topológica que decrecen con acoplamiento. La comparación de estas cotas con la entropía calculada numéricamente y su interpretación en el espacio de fase demuestran que aquellas describen la esencia de la transición del régimen desacoplado hacia la sincronización.
Dinámica y Aritmética
Mario Ponce
Pontificia Universidad Católica de Chile.
Viernes 20 de junio, 16:00 hrs., sala 2-2.
En esta exposición trataremos sistemas dinámicos cuyo comportamiento está gobernado por ciertos valores reales que llamamos frecuencias. Daremos algunas ideas de cómo las propiedades aritméticas finas de estas frecuencias implican nociones de estabilidad para estas dinámicas. Note que los sistemas dinámicos que trataremos no poseen hiperbolicidad y luego las nociones de estabilidad son muy poco robustas y dependen estrechamente de la aritmética.
An Open Class of Non-Uniformly Hyperbolic Diffeomorphisms
Martin Andersson
Pontifícia Universidade Católica do Río de Janeiro, Brasil.
Viernes 13 de junio, 16:00 hrs., sala 2-2.
This talk deals with statistical properties of iterations of diffeomorphisms. There has long been known that there are open classes of so-called uniformly hyperbolic diffeomorphisms for which the statistical properties of most orbits can be described in terms of a finite number of probability measures, known as physical measures. Although this is believed to be true in great generality, few specific results have been obtained.
However, a noteworthy contribution to the theory was provided by a work of Alves, Bonatti and Viana (Invent. Math.2000) in which the authors weaken the hypothesis of uniform hyperbolicity to a notion of non-uniform one, called partial hyperbolicity with mostly expanding central direction.
Recent research reveals that, although having mostly expanding central direction is not open/robust under small perturbations, it contains a robust (open) class of interesting (non-uniformly hyperbolic) diffeomorphisms. It can further be shown that, within this class, physical measures vary continuously with small perturbations of the dynamics.
Análisis Multifractal para las Aplicaciones de Gauss y de Renyi
Godofredo Iommi
Pontificia Universidad Católica de Chile.
Viernes 06 de junio, 16:00 hrs., sala 2-2.
Todo número real posee una descomposición en fracciones continuas y en fracciones continuas reversas. Asociadas a estas descomposiciones tenemos dos sistemas dinámicos, uno definido por la transformación de Gauss (que es hiperbólico) y el otro por la transformación de Renyi (que es no uniformemente hiperbólico). En esta charla discutiremos aspectos de la dinámica de estas aplicaciones y las relacionaremos con propiedades diofantinas de los números.
Formalismo Termodinámico para Aplicaciones Trascendentales desde un punto de vista de Dinámica Simbólica
Irene Inoquio
Universidad Católica del Norte.
Viernes 30 de mayo, 16:00 hrs., sala 2-2.
Estudiamos algunos subconjuntos del Shift contable, estos pueden ser dotados de su propia métrica en el cual no necesariamente pueden ser extendida al shift. Identificamos una apropiada presión topológica para potenciales débilmente Hölder Continuos, luego como principal resultado construiremos medidas conformes y estados de equilibrios, La principal motivación es que estos subconjuntos codifican la dinámica de algunas aplicaciones trascendentales. Un ejemplo en particular es la familia de aplicaciones , with y . En este ejemplo estamos interesados en el conjunto de los puntos finales desde el punto de vista de dinámica simbólica. Este subconjunto no es cerrado y su estructura geométrica es incompatible con la estructura del shift.
Sobre la Construcción de la Medida de Haar y la Integral de Haar
Fabián Belmonte
Universidad de Chile.
Viernes 23 de mayo, 16:00 hrs., sala 2-2.
Dado un grupo topológico Hausdorff localmente compacto G, demostraremos la existencia y unicidad (salvo ponderación positiva) de la medida de Haar izquierda. Para esto construiremos un funcional definido sobre las funciones continuas de soporte compacto , positivo e invariante por traslación, conocido como la integral de Haar izquierda. Gracias al teorema de representación de Riesz, este funcional no solo inducirá la medida de Haar sino que además quedará representado por medio de una integral (de aquí su nombre). La invarianza de la integral por traslación izquierda se traspasará a () gracias a la densidad de en él, de aquí se obtiene la invarianza de la medida por traslación izquierda. Finalmente dejaremos algunas preguntas abiertas y dar algunos ejemplos concretos.
Seminario Junior 2022 (organizado por Leonardo Parra)
Entropía topológica y Axioma A. Parte II
Bastián Núñez
Pontificia Universidad Católica de Valparaiso
21 de abril,
16:00 hrs. Sala IMA 2-2
Esta segunda charla tendra ́ por objetivo hablar sobre los difeomorfismos Axioma A de Smale (1967), en particular, su lugar histo ́rico en la teor ́ıa de los sistemas dina ́micos diferenciables y de algunas herramientas cl ́asicas de dina ́mica hiperb ́olica que pueden obtenerse a partir de esta propiedad. Al final de esta charla aplicaremos estas her- ramientas para demostrar una relaci ́on entre la entrop ́ıa topolo ́gica de un difeomorfismo Axioma A y sus puntos perio ́dicos, siguiendo a Bowen (1971, 1978). Vale recorda que en la parte I hablamos sobre los conceptos y ejemplos ba ́sicos de sistemas dina ́micos discretos.
Entropía topológica y Axioma A. Parte I
Bastián Núñez
Pontificia Universidad Católica de Valparaiso
07 de abril,
16:00 hrs. ID Zoom 918 1086 8033
En esta primera charla, veremos conceptos y ejemplos ba ́sicos de sistemas din ́amicos discretos, que pueden concebirse como iteraciones de alguna funci ́on f : X → X. El estudio de los sistemas din ́amicos es el estudio de las o ́rbitas de estos sistemas, es decir, de las sucesiones x,f(x),f(f(x)),··· para distintos x ∈ X. Esto permite modelar el comportamiento de sistemas que evolucionan a lo largo del tiempo. Algunos de estos sistemas son muy sencillos y predecibles, y otros tienen comportamientos cao ́ticos o impredecibles. Dado un sistema dina ́mico (X,f) una pregunta que surge es ¿qu ́e tan complejas o ca ́oticas son sus ́orbitas? Una forma de asociar una cantidad num ́erica a esta propiedad es mediante la entrop ́ıa topolo ́gica, que cuenta “cua ́ntas ́orbitas” suficien- temente separadas tiene el sistema. Daremos la definici ́on de Bowen (1970) y algunos ejemplos y propiedades ba ́sicas.
Seminario Junior 2019 (organizado por Bruno Yemini)
Dinámica de los Endomorfismos del Círculo e Introducción a la Dinámica Simbólica. Caso: El Doubling Map.
Diego Lugo
Pontificia Universidad Católica de Valparaiso
26 de septiembre,
16:00 hrs. Sala 2-2
Se abordarán los aspectos básicos de la dinámica sobre la
circunferencia unidad, vista con del intervalo $[0,1]$ con 1 y 0
identificados tomando como ejemplo base la transformación $T_2$
definida en el círculo $\mathbb{S}^1$ como
$$T_2(x)=2x(mod1).$$
Calcularemos sus órbitas periódicas (así como también veremos que
tiene puntos periódicos de todos los órdenes), que existen puntos
eventualmente fijos (que además son densos en el círculo), probaremos
que es una aplicación transitiva, entre otros hechos interesantes.
Por último, veremos la equivalencia (vía conjugación topológica) de
este sistema dinámico con el célebre shift unilateral de dos símbolos,
donde otras características interesantes del Doubling Map pueden ser
vistas a través de la conjugación.
Introduction to Holomorphic dynamics
Sylvain Bonnot
Universidade de São Paulo – Brasil
5 de septiembre,
16:00 hrs. Sala 2-2
Complex dynamics (i.e the study of the iteration of analytic maps) witnessed a rapid expansion in the 80’s when it became possible to visualize the dynamics through the use of computers. In this talk, we present an introduction to this very active field, concentrating on quadratic dynamics (Julia sets, Mandelbrot set), and also introducing dynamics in several complex variables.
Introducción a la Familia Cuadrática
Leonardo Parra
Pontificia Universidad Católica de Valparaiso
29 de agosto,
16:00 hrs. Sala 2-2
El objetivo es dar algunas nociones básicas de dinámica discreta y ejemplificarlas a través de la familia de logística o familia cuadrática.
La exposición será de carácter introductorio a los sistemas dinámicos discretos. En la misma me propongo motivar el estudio de esta área de las matemáticas modernas, por tanto, no hay prerrequisitos para la tertulia más que el interés de conocer una nueva vertiente de esta disciplina.
Partiré con un breve recuento histórico, seguidamente daré las definiciones de sistemas dinámicos continuos y discretos, órbita para el futuro de un punto (para el pasado en caso de que el mapa sea invertible y órbita de un punto). Clasificación de los puntos de un espacio X de acuerdo a la acción de un mapa sobre ellos; puntos fijos, periódicos, pre-periódicos, recurrentes y no errantes.
Seguidamente presentar la familia logística, y a través de la visualización geométrica de su grafo, estudiar el comportamiento de la dinámica para algunos valores del parámetro, procurando las definiciones antes mencionadas y de ser posible, por último hacer notar cómo puede ocurrir que cambie radicalmente la dinámica para dos sistemas muy cercanos.
Seminario Junior 2018 (Organizan Vanessa Matus de la Parra y Felipe Riquelme)
Entropía en conjuntos de nivel de promedios de Birkhoff sobre el espacio simbólico compacto
Sebastián Burgos
Pontificia Universidad Católica de Chile
06 de diciembre,
16:00 hrs. Sala 2-1
En esta charla consideramos un potencial Hölder en el espacio simbólico compacto, y nos vamos a interesar en los conjuntos de nivel de los promedios de Birkhoff de este potencial. Usando una definición variacional de entropía restringida a subconjuntos, vamos a estudiar la función que manda un número real a la entropía restringida al conjunto de nivel respectivo.
Optimización ergódica: Introducción, ejemplos y teoremas de revelación
Sebastián Pavez Molina
Pontificia Universidad Católica de Chile
29 de noviembre,
16:00 hrs. Sala 2-1
El objeto de estudio de la optimización ergódica es describir las órbitas de cierto sistema dinámico que maximizan cierta función performance dada. En el contexto de esta charla, consideraremos el caso de un sistema dinámico, con un espacio métrico compacto, , y queremos estudiar qué ocurre con las órbitas que maximizan el problema:
(1)
donde este límite exista. El problema (1) se puede trabajar equivalentemente como:
(2)
donde denota las medidas de probabilidad invariantes. Luego de enunciar algunos resultados en el contexto del problema (2), vamos a hablar en específico de un ejemplo conocido en el círculo . Para finalizar, vamos a hablar de las revelaciones, las cuales son una herramienta bastante útil para describir medidas que maximizan (2).
Los ejemplos de R. Mañé y M. Shub.
Contribución para el estudio de difeomorfismos robustamente transitivos
Leonardo Parra
Universidad de los Andes (Mérida – Venezuela)
30 de octubre,
16:00 hrs. Sala 2-2
Estudiar el comportamiento del ejemplo de Ricardo Mañé, un mapa derivado de Anosov sobre el toro de dimensión 3. De igual modo, entender el comportamiento del ejemplo de Michael Shub, mapa del tipo skew product sobre el toro de dimensión 4.
En dichos ejemplos se buscará mostrar que comparten dos propiedades dinámicas; minimalidad de las foliaciones estables y otra que permite conseguir un “corazón hiperbólico” (some hyperbolicity). La conjunción de ambas propiedades resulta en una condición suficiente, debida a Enrique Pujals y Martín Sambarino en 2006, que nos da la robustez de la transitividad topológica.
Es de resalta que los mapas mencionados no son difeomorfismos hiperbólicos, de hecho pertenecen a una clase más débil denominados difeomorfismos parcialmente hiperbólicos, y cuyo espacio fase son variedades riemannianas de dimensión mayor o igual a tres.
Dinámica y propiedades de los homeomorfismos Pseudo-Anosov
Pilar Lorenzo y Bruno Yemini
PUCV – UTFSM – UV
25 de octubre,
16:00 hrs. Sala 2-1
En el año 1988 William Thurston termina un trabajo de Nielsen de 1944 que clasifica las clases de isotopía de homeomorfismos en superficies compactas. Dicha clasificación indica que las clases están representadas por la identidad, un pseudo-anosov y un homeomorfismo reducible (esencialmente “pedazos” isotópicos a la identidad y otros a un pseudo-anosov, pegados por un Dehn twist), respectivamente. Esto es, la clase de isotopía con dinámica “interesante”, está representada por un pseudo-anosov.
Por otra parte, en el año 1989, Jorge Lewowicz clasifica los homeomorfismos expansivos en superficies compactas, llegando a la conclusión de que todo expansivo en una superficie de género mayor o igual a 2 es conjugado a un pseudo-anosov.
En esta charla conjunta intentaremos definir estos mapas y estudiar sus foliaciones, dinámica y propiedades, comparando con lo que ya conocemos.
Introducción a la teoría de calculabilidad y complejidad computacional en el plano, con aplicaciones en dinámica compleja
Cristóbal Rojas
Universidad Andrés Bello
09 de agosto,
16:00 hrs. Sala 2-1
La teoría moderna de los algoritmos que actúan o manipulan objetos discretos ha revolucionado nuestra forma de estudiar y clasificar problemas de carácter finito, por ejemplo en función de su dificultad computacional. En particular, las preguntas básicas de interés frente a un problema discreto incluyen: ¿es posible resolver el problema algorítmicamente (decidibilidad)?, y en el caso afirmativo, ¿es posible resolverlo de forma eficiente (complejidad computacional)?
Por otro lado, muchos problemas o fenómenos de la naturaleza se modelan y estudian utilizando estructuras matemáticas propias del continuo. En esta charla, presentaremos las ideas básicas que permiten extender la teoría de los algoritmos para aplicar así sus técnicas en áreas como análisis, y discutiremos algunas de sus aplicaciones al área de dinámica compleja.
Medidas invariantes para funciones del intervalo
Jorge Olivares
Universidad de Chile – University of Rochester
3 de Julio,
16:00 hrs. Sala 2-1
Las medidas invariantes absolutamente continuas juegan un rol importante en el estudio del comportamiento de los sistemas dinámicos no-uniformemente hiperbólicos. En el caso de sistemas dinámicos del intervalo, se han mostrado varias condiciones que garantizan la existencia de una medida invariante que es absolutamente continua respecto a la medida de Lebesgue (acip). En esta charla presentaremos el trabajo de Bruin, Rivera-Letelier, Shen y van Strien sobre la existencia de una acip para funciones multimodales del intervalo con puntos críticos no planos y todos sus puntos periódicos repulsores hiperbólicos.
El argumento de Mañé
Enzo Fuentes
Pontificia Universidad Católica de Valparaíso
28 de junio,
16:00 hrs. Sala 2-1
En los sistemas dinámicos, un importante aspecto en el estudio de la ergodicidad es la regularidad de las foliaciones invariantes dadas por el sistema. Es sabido que para difeomorfismos hiperbólicos y parcialmente hiperbólicos de clase , las foliaciones estable e inestable son absolutamente continuas, lo cual otorga importantes propiedades ergódicas. Ahora, una línea importante de investigación es el estudio de la regularidad de la foliación central para un difeomorfismo parcialmente hiperbólico, y es por esto que en esta charla veremos el argumento de Mañé, el cual relaciona la foliación central (compacta), los exponentes de Lyapunov centrales y la continuidad absoluta. Además, veremos cómo este argumento puede ser replicado en escenarios más generales.
Sobre la distribución de raíces de la ecuación
Vanessa Matus de la Parra
Pontificia Universidad Católica de Valparaíso
14 de junio,
16:00 hrs. Sala 2-1
En 1965, Brolin utilizó teoría del potencial para probar que si P es un polinomio complejo, las soluciones de la ecuación tienen una distribución asintóticamente uniforme para alguna medida invariante sobre la esfera de Riemann. Sin embargo, esto es más general. Ljubich demostró en 1981 que esto vale para cualquier función racional sobre la esfera de Riemann, con una medida soportada en el conjunto de Julia, y exhibió cómo obtener esta medida como límite de medidas que equidistribuyen la masa en las pre-imágenes de un punto. En esta charla mostraremos algunas nociones básicas de dinámica compleja y parte del trabajo de Ljubich.
Removiendo exponentes de Lyapunov nulos en difeomorfismos de
José López-Olate
Pontificia Universidad Católica de Valparaíso
31 de mayo,
16:00 hrs. Sala 2-1
Los exponentes de Lyapunov tienen un rol fundamental en la comprensión de los sistemas dinámicos. Dichos sistemas son bien entendidos si todos los exponentes son distintos de cero, razón por la cual es problemático si aparece un exponente nulo.
Particularmente, en esta charla, presentaremos el caso de un automorfismo del toro , el cual es parcialmente hiperbólico con un exponente de Lyapunov nulo, el cual será removido mediante perturbaciones globales suaves. Mostraremos la técnica utilizada para este fin, la cual aparece en el artículo “Pathological foliations and removable zero exponents” de Shub y Wilkinson.
Dinámica en variedades y desigualdad de Ruelle
Tadashii Horta
Pontificia Universidad Católica de Valparaíso
17 de mayo,
16:00 hrs. Sala 2-1
La entropía es un concepto de especial interés en sistemas dinámicos. Pese a que calcular el valor de la entropía para una determinada transformación puede ser una tarea sumamente difícil, pueden hallarse condiciones suficientes para controlar el valor de la entropía, es decir, regular el caos del sistema. El principal resultado a mostrar en esta charla es la desigualdad de Ruelle y nos permitirá estudiar la entropía y relacionarla con el comportamiento local lineal de una transformación en variedades.
La tricotomía de escape para funciones racionales singularmente perturbadas
Samuel Vega
Pontificia Universidad Católica de Valparaíso
10 de mayo,
16:00 hrs. Sala 2-1
En esta charla, daremos a conocer el trabajo realizado por Devaney, Look y Uminsky sobre el comportamiento dinámico de funciones racionales de tipo , donde bajo la hipótesis de que las órbitas de puntos críticos libres entran en la cuenca de atracción inmediata de infinito, ocurre que, dependiendo de dónde se encuentren los valores críticos, el conjunto de Julia asociado a es un conjunto de Cantor o un conjunto de Cantor de círculos o bien una curva de Sierspinsky.
Teorema de existencia de medidas invariantes
Bárbara Núñez
Pontificia Universidad Católica de Valparaíso
19 de abril,
16:00 hrs. Sala 2-1
La charla está enfocada en demostrar que existen medidas invariantes en espacios métricos compactos. Para esto, recordaremos algunos conceptos de teoría de integración, definiremos la topología débil* y tomaremos algunas herramientas del análisis funcional. Para finalizar, analizaremos la importancia de este resultado y una de sus aplicaciones.
Cortando, apilando e intercambiando intervalos
Felipe Riquelme
Pontificia Universidad Católica de Valparaíso
05 de abril,
16:00 hrs. Sala 2-1
En esta charla mostraremos que todo sistema dinámico medible aperiódico puede ser obtenido a través de una construcción de cortar y apilar. Esto implica en particular que tales transformaciones son conjugadas a intercambios de intervalos numerables dotados de la medida de Lebesgue. Si el tiempo lo permite, concluiremos que todo flujo ergódico es representado como un flujo suave en una 2-variedad abierta. Esta charla está basada en el paper “Cutting and stacking, interval exchanges and geometric models” (1985) de P. Arnoux, D. Ornstein y B. Weiss.
Dinámica Holomorfa en dimensión uno. Aspectos formales y analíticos
Paola Rivera
Pontificia Universidad Católica de Valparaíso
22 de marzo,
16:00 hrs. Sala 2-1
Partimos del grupo de difeomorfismos de entradas complejas que fijan el punto e intentamos simplificar su expresión por medio de cambios de coordenadas adecuados, esto con el fin de entender la dinámica del germen. Para ello debemos tener en cuenta que el coeficiente que acompaña al término lineal nos proporciona una clasificación de difeomorfismos en hiperbólico, parabólico o elíptico. Esta clasificación nos permite atacar cada caso de manera independiente tanto en el aspecto formal como en el analítico. Adicionalmente, añadiendo la condición de Brjuno probamos que el espacio de las series s-Gevrey, también admite una linearización con un germen del tipo s-Gevrey.
Seminario Junior 2017 (Organizan Vanessa Matus de la Parra y Felipe Riquelme)
Mixing topológico del flujo geodésico en superficies hiperbólicas de volumen finito
Vanessa Matus de la Parra
Pontificia Universidad Católica de Valparaíso
7 de Diciembre,
17:00 hrs. Aula
El mixing topológico es una de las distintas formas de medir caos. Éste establece que zonas arbitrarias del espacio interactúan en el futuro y la interacción es persistente. Verificar cuándo se satisface esta propiedad no es una tarea fácil, mas admitir regiones no compactas en el espacio lo convierte en un problema aún más difícil. Como un primer paso en este objetivo, consideraremos superficies hiperbólicas de volumen finito y estudiaremos el mixing topológico del flujo determinado por seguir la curva que minimiza distancia en la dirección escogida, al cual llamamos flujo geodésico.
El problema del Pijama
Nicolás Alvarado
Pontificia Universidad Católica de Chile
30 de Noviembre,
16:00 hrs. Sala 2-1
El conjunto del pijama es la unión de todas las vecindades verticales de radio arbitrariamente pequeño, centradas en los enteros del eje real en el plano complejo. En esta charla mostraremos que es posible cubrir todo el plano complejo usando una cantidad finita de rotaciones de las franjas que componen este conjunto.
Una descomposición espectral del atractor para sistemas contractivos a trozos en el intervalo
Alfredo Calderón Céspedes
PUCV – UTFSM – UV
16 de Noviembre,
16:00 hrs. Sala 2-1
Consideramos un sistema contractivo a trozos , donde es un espacio métrico compacto. Nos interesa hacer una descripción topológica de los diversos comportamientos asintóticos del sistema, en especial cuando hay órbitas que se acumulan en discontinuidades. Este evento produce un fenómeno de separación de órbitas que da lugar a un comportamiento irregular en la dinámica asintótica de , en contraste a la dinámica periódica que exhiben sistemas cuyo atractor no intersecta discontinuidades. En particular, cuando es un intervalo y es inyectiva, se conjetura que es posible hacer una descomposición “espectral” del atractor clasificando los comportamientos de convergencia que tienen las órbitas del sistema.
El argumento de Hopf en un contexto no lineal
Carlos Vásquez
Pontificia Universidad Católica de Valparaíso
02 de Noviembre,
16:00 hrs. Sala 2-1
Consideremos un difeomorfismo de Anosov no necesariamente lineal, transitivo y conservativo. Mostraremos que la medida de Lebesgue en este caso es ergódica. La demostración consiste en el clásico argumento de Hopf. Ilustraremos los principales pasos y herramientas usadas en él. Si el tiempo lo permite, me referiré a la estabilidad ergódica y a la conjetura de Pugh-Shub.
Teorema de la sección invariante y aplicaciones
Radu Saghin
Pontificia Universidad Católica de Valparaíso
19 de Octubre,
16:00 hrs. Sala 2-1
Voy a presentar una variante simple del teorema de la sección invariante y después voy a comentar sobre varias generalizaciones y aplicaciones para difeomorfismos parcialmente hiperbólicos: teorema de la variedad estable, regularidad de descomposiciones dominadas y de foliaciones invariantes.
La Medida de Máxima Entropía para funciones racionales
Gerardo Honorato
Universidad de Valparaíso
12 de Octubre,
16:00 hrs. Sala 2-1
En esta charla estudiaremos un resultado demostrado independientemente por Freire-Lopes-Mañé y por Lyubich sobre la Medida de Máxima Entropía para funciones racionales. Seguiremos la demostración de Lyubich y veremos además la prueba de que las funciones racionales son asintóticamente h-expansivas.
En el complemento de la hiperbolicidad
Sebastián Pérez
Pontificia Universidad Católica de Valparaíso
14 de Septiembre,
16:00 hrs. Sala 2-1
El problema fundamental en la teoría diferenciable de sistemas dinámicos es describir la dinámica de los conjuntos abiertos en el espacio de todos los sistemas dinámicos, que sean interesantes ya sea en términos de su propia estructura matemática o relevancia para otras áreas de las ciencias. En este sentido, la teoría hiperbólica ha sido éxito: hiperbolicidad es un enfoque geométrico, topológico y estadístico del estudio de los sistemas dinámicos y está en el núcleo de los modelos caóticos, uno de los principales paradigmas de la ciencia actual. Por este motivo es que la densidad de los sistemas hiperbólicos entre los sistemas dinámicos es uno de los problemas más importantes en dinámica diferenciable. En esta charla presentaré el primer ejemplo de un conjunto abierto de difeomorfismos que no son hiperbólicos, nos referimos al ejemplo obtenido por Abraham y Smale en [AS].
[AS] R. Abraham and S. Smale, Nongenericity of ∑-stability, in Proceedings of Symposia in Pure Mathematics, vol. 14.
Jugando con estructuras complejas en dinámica holomorfa
Matthieu Arfeux
Pontificia Universidad Católica de Valparaíso
17 de Agosto,
16:00 hrs. Sala 2-1
El espacio de moduli de los polinomios cúbicos complejos se identifica a . John Milnor conjeturó hace 25 años que el conjunto de polinomios con cierto punto crítico de periodo exactamente n forma una curva irreducible vía dicha identificación. Él mostró que es suficiente sólo demostrar que tal conjunto de polinomios es conexo. Recientemente, en un trabajo en colaboración con Jan Kiwi, hemos demostrado que la conjetura es cierta.
Durante esta charla, trataré de explicar la herramienta principal de nuestra demostración. Dicha herramienta fue desarrollada por Mary Rees inspirada por el trabajo de William Thurston, que introdujo la dinámica en el espacio de las estructuras complejas.
Dinámica de funciones racionales sobre la esfera de Riemann
Samuel Vega
Pontificia Universidad Católica de Valparaíso
25 de mayo,
16:00 hrs. Sala 2-1
En esta charla se dará una introducción a la dinámica compleja, partiendo de las transformaciones de Möbius y la función las cuales a pesar de tener un comportamiento dinámico bastante sencillo, son ejemplos poco frecuentes de lo que ocurre en general. Por ello, es que para analizar en profundidad la dinámica de la mayoría de los sistemas dinámicos complejos, es necesario analizar el conjunto de Julia, por lo cual nos centraremos en dar algunas propiedades y caracterizaciones básicas de este conjunto.
Foliaciones Hölder genéricas
Enzo Fuentes
PUCV-UTFSM-UV
18 de mayo,16:00 hrs. Sala 2-1
En esta charla, veremos el ejemplo de un espacio de foliaciones de (con una cierta topología) que genéricamente no son absolutamente continuas. Es más, las medidas condicionales definidas por la desintegración de Rokhlin son medidas de Dirac. Este tipo de foliaciones son motivadas por las que aparecen en sistemas hiperbólicos y parcialmente hiperbólicos, en donde sabemos que si el difeomorfismo es de clase , las foliaciones estable e inestable son absolutamente continuas, pero este resultado indicaría que si consideramos un difeomorfismo donde las foliaciones no tienen regularidad adicional, genéricamente las foliaciones no son absolutamente continuas. Por ejemplo, existen conjuntos abiertos de difeomorfismos parcialmente hiperbólicos de clase , con , en donde su foliación central no es absolutamente continua, y también hay ejemplos de difeomorfismos de Anosov de clase en donde las foliaciones estable e inestable no son absolutamente continuas, por lo que podemos esperar que en estos 2 casos genéricamente las foliaciones son patológicas.
Entropía
Pilar Lorenzo
PUCV-UTFSM-UV
Jueves 4 de mayo,
16:00 hrs. Sala 2-1
El concepto de entropía es bastante popular, aparece en varias películas y series. Pero ¿qué es realmente? ¿Hay diferentes tipos de entropía? ¿Es correcta la noción de que entropía equivale a “desorden”?
En esta charla definiremos varios tipos de entropía y calcularemos ejemplos para generar intuición.
Una aplicación del Teorema de Birkhoff
José Luis López
Pontificia Universidad Católica de Valparaíso
20 de abril,
16:00 hrs. Sala 2-1
¿Es posible saber cuántas veces aparece, en promedio, el número 7 como primera cifra en los términos de la sucesión 1,2,4,8,16,…,2n? En esta charla, dirigida especialmente a estudiantes de Licenciatura, veremos cómo llevar esta pregunta al mundo de los sistemas dinámicos e intentaremos llegar a una respuesta, aplicando algunos resultados de teoría ergódica. También veremos algunas generalizaciones de este problema.
Desigualdad de Ruelle para el flujo geodésico
Felipe Riquelme
Pontificia Universidad Católica de Valparaíso
06 de abril,
16:00 hrs. Sala 2-1
La desigualdad de Ruelle es uno de los principales resultados en teoría ergódica diferenciable. Esta desigualdad asegura que el caos de la dinámica de un difeomorfismo de una variedad compacta está controlado por la dilatación local de la dinámica. En términos formales, la entropía en medida es acotada superiormente por la suma de los exponentes de Lyapunov positivos. En esta charla estudiaremos la veracidad de esta desigualdad al eliminar la hipótesis de compacidad. Veremos que en toda la generalidad esta resulta ser falsa, mientras que en casos particulares como el del flujo geodésico en una variedad Riemanniana a curvatura negativa, se verifica. Si el tiempo lo permite se discutirá también el caso de igualdad.
Seminario Junior 2016 (Organizan Fabián Contreras y Nelda Jaque)
Dinámica de automorfismos en nilvariedades
Sebastián Ramírez
Pontificia Universidad Católica de Valparaíso
01 de diciembre, 16:00 hrs. Sala 2-2
Una nilvariedad es un espacio cociente entre un grupo de Lie G nilpotente simplemente conexo, y un subgrupo discreto Γ tal que G/Γ es compacto. En dimensión tres, tenemos el 3-toro y la nilvariedad Heisenberg. En esta charla, estudiaremos la dinámica de difeomorfismos sobre estas dos nilvariedades inducidos por automorfismos de grupos de Lie, y veremos qué relación tienen estos sistemas, que provienen del mundo algebraico, con los difeomorfismos (arbitrarios) sobre estas nilvariedades.
Existencia de medidas invariantes absolutamente continuas vía aplicaciones de retorno
Rodrigo Castro
Pontificia Universidad Católica de Valparaíso
17 de noviembre, 16:00 hrs. Sala 2-2
La charla está enfocada en dar condiciones suficientes para la existencia de medidas invariantes finitas absolutamente continuas (acims) para ciertas transformaciones en el intervalo por medio de la aplicación de retorno. Para esto consideraremos la aplicación de retorno sobre algún conjunto apropiado de tal manera que podamos asegurar la existencia de acims para esta aplicación. Apoyado en lo anterior, construiremos una acim para nuestro sistema original y veremos bajo qué condiciones esta medida es finita.
Dinámica y conjunto de Mandelbrot
Matthieu Arfeux
Pontificia Universidad Católica de Valparaíso
10 de noviembre, 16:00 hrs. Sala 2-2
El objetivo de esta charla es hablar un poco de dinámica holomorfa con los polinomios de grado 2. Introduciremos los conjuntos de Fatou, Julia y Mandelbrot. Estudiaremos algunas propiedades de esos conjuntos y hablaremos de algunas preguntas abiertas en este tema.
Foliaciones con hojas de género infinito
Diego Rodríguez
Instituto Nacional de Matemática Pura e Aplicada, Brasil
03 de noviembre, 16:00 hrs. Sala 2-2
Las hojas de foliaciones holomorfas de dimensión 1 son superficies de Riemann. Veremos bajo qué condiciones existen hojas con género infinito, y agregando condiciones probaremos que hay hojas homeomorfas al monstruo de Loch Ness.
Una ecuación diferencial parcial y sus consecuencias en dinámica compleja
Gerardo Honorato
Universidad de Valparaíso
27 de octubre, 16:00 hrs. Sala 2-2
La ecuación de Beltrami es una ecuación diferencial parcial con profundas consecuencias geométricas para el análisis complejo. La ecuación fue planteada y solucionada a lo largo de años en trabajos de Gauss, Morrey, Boyarski, Bers y Ahlfors, dando origen al Measurable Riemann mapping theorem. En esta charla mostraremos algunas de sus principales aplicaciones y consecuencias en dinámica compleja como por ejemplo el celebrado Straightening theorem de Douady-Hubbard, y a modo ilustrativo su relación con el método de Newton cúbico.
Ecuaciones diferenciales autónomas y no autónomas
Ignacio Huerta Navarro
Universidad de Santiago de Chile
20 de octubre, 16:00 hrs. Sala 2-2
Hablaremos un poco sobre los avances históricos relacionados al estudio de sistemas de ecuaciones diferenciales autónomos y no autónomos. Para el caso autónomo exhibiremos el Teorema de Hartman-Grobman y un ejemplo de un sistema no autónomo que cumple ciertos criterios de los autónomos pero cuyo comportamiento no es el esperado de esta teoría. Con esto damos paso al caso no autónomo, en el cual se muestra el concepto de dicotomía exponencial y una generalización del Teorema de Hartman-Grobman clásico. Posteriormente mostramos la definición de dicotomía exponencial no uniforme y su respectivo Teorema de Hartman-Grobman. Finalmente, se mencionarán conceptos claves en el marco del desarrollo de mi investigación.
Sobre el Lema de Pliss y algunas aplicaciones
Francisco Valenzuela
Pontificia Universidad Católica de Valparaíso
13 de octubre, 16:00 hrs. Sala 2-2
En esta charla presentaremos un resultado puramente aritmético debido a V.A. Pliss en su trabajo “On a conjecture of Smale”, Diff . Uravnenija 8 (1972), 268-282. El Lema de Pliss muestra que, si en un periodo grande se da una contracción/expansión exponencial medianamente fuerte, entonces existen (muchos) “tiempos hiperbólicos” para los cuales la contracción/expansión exponencial se da en todos los tiempos.
Nuestra propuesta es revisar la demostración de dicho lema y presentar una aplicación en el contexto de dinámicas uno–dimensional para mostrar una equivalencia de hiperbolicidad debido a R. Mañé. Si nos sobra tiempo, mostraremos otros contextos en los que este resultado puede ser aplicado, a saber, cociclos multiplicativos reales.
La mayoría de las aplicaciones expansoras no tienen medida invariante absolutamente continua
Enzo Fuentes
PUCV – UTFSM – UV
29 de septiembre, 16:00 hrs. Sala 2-2
En esta ocasión, veremos un resultado de Quas (1999) donde muestra que una aplicación expansora genérica del círculo no tiene medida invariante absolutamente continua. Este resultado contrasta con lo que se sabía hasta ese momento, en donde las aplicaciones expansoras (incluso ) siempre tienen una única medida de probabilidad invariante absolutamente continua.
Un problema de aproximación numérica y dinámica del flujo geodésico
Felipe Riquelme
Pontificia Universidad Católica de Valparaíso
08 de septiembre, 16:00 hrs. Sala 2-2
En esta charla, se tratará un problema de rapidez de convergencia de números racionales hacia un número irracional mediante propiedades dinámicas del flujo geodésico en la superficie modular.
Valores propios de sistemas de embaldosadosde fusiones
Mauricio Allendes
Universidad de Chile
30 de junio, 16:00 hrs. Sala 2-2
En esta sesión, comenzaremos introduciendo los conceptos de valores propios y valores propios topológicos de un sistema dinámico, para luego hablar sobre los actuales criterios, con los que se cuenta para identificarlos. Una vez introducidos en la teoría, mostraremos algunos ejemplos y con ellos, veremos una técnica para perturbar un poco el sistema dinámico, a modo de mantener el mismo conjunto de valores propios, pero hacer perder el carácter topológico que puedan tener los valores propios no triviales. Finalmente, hablaremos de algunos resultados sobre la estructura de los sistemas de embaldosados de fusión y las direcciones en las que se trabaja, para generalizar los criterios que permiten identificar los valores propios de un sistema de fusión.
Fracciones continuas y dinámica
Sebastián Herrero
Pontificia Universidad Católica de Chile
23 de junio, 16:00 hrs. Sala 2-2
En esta charla, daremos una introducción elemental a la teoría de fracciones continuas con énfasis en los sistemas dinámicos subyacentes.
Una aplicación del teorema de Perron – Fröbenius
Alfredo Calderón
PUCV-UTFSM-UV
09 de junio, 16:00 hrs. Sala 2-2
Dada una matriz A de coeficientes no negativos, el teorema de Perron-Fröbenius dice que A posee un autovalor real, positivo y maximal. Este resultado tiene gran protagonismo en el desarrollo del análisis matricial y del formalismo termodinámico. En esta charla, presentamos una interesante aplicación que nos muestra cómo el teorema de P-F permite abordar una problemática de la optimización desde un punto de vista puramente algebraico.
Difeomorfismos de Anosov en el toro (Parte 2)
Pilar Lorenzo
PUCV-UTFSM-UV
02 de junio, 16:00 hrs. Sala 2-2
En esta charla, veremos cómo funciona la conjugación entre dos difeomorfismos lineales y que todo difeomorfismo de Anosov es conjugado a uno lineal. Comentaremos también la definición de -expansividad y su relación con los difeomorfismos de Anosov en el toro.
Difeomorfismos de Anosov en el toro (Parte 1)
Pilar Lorenzo
PUCV-UTFSM-UV
26 de mayo
16:00 hrs. Sala 2-2.
En esta charla veremos las propiedades dinámicas más importantes de los difeomorfismos de Anosov en el toro , centrándonos puntualmente en el ejemplo de Arnold, la matriz de coeficientes (2,1,1,1). Veremos como funciona la conjugación entre dos difeomorfismos lineales y que todo difeomorfismo de Anosov es conjugado a uno lineal. Comentaremos también la definición de -expansividad y su relación con los difeomorfismoss de Anosov en .
Foliaciones absolutamente continuas para difeomorfismos
Enzo Fuentes
PUCV-UTFSM-UV
19 de mayo
16:00 hrs. Sala 2-2.
En esta charla, veremos una contextualización histórica de resultados sobre la suavidad de foliaciones estables e inestables (por ejemplos, si son , absolutamente continuas, etc.) dependiendo si el sistema dinámico es un difeomorfismo de Anosov de clase , es un mapa genérico, etc. Daremos las definiciones básicas necesarias y algunas ideas de las demostraciones.
Deformaciones de aplicaciones expansoras en el círculo
Fabián Contreras
Pontificia Universidad Católica de Valparaíso, Chile
05 de mayo
16:00 hrs. Sala 2-2.
Si es una familia uniparamétrica de aplicaciones expansoras de clase en el círculo, mostraremos un criterio para determinar cuando ellas pertenecen a una misma clase topológica. Veremos también como obtener un criterio similar cuando se tiene una familia de aplicaciones unimodales expansoras por pedazos.
Entropía topológica para transformaciones continuas sobre espacios métricos compactos
Nelda Jaque
Universidad Católica del Norte
28 de abril , 16:00 hrs. Sala 2-2.
En esta charla, daremos dos definiciones de entropía topológica a través de conjuntos generadores y conjuntos separados, y demostraremos que en el contexto de transformaciones continuas sobre espacios métricos compactos estas dos definiciones coinciden.
Seminario Junior 2015 (Organizan Fabián Contreras y Nelda Jaque)
Mini-curso:
Difeomorfismos Axioma A
Nelda Jaque
Universidad Católica del Norte
12:00 hrs. Sala 2-2.
Instituto de Matemática, Pontificia Universidad Católica de Valparaíso.
En este seminario nos dedicaremos a estudiar el survey “On Axiom A diffeomorphisms” de Rufus Bowen (Regional Conference Series in Mathematics, No. 35. American Mathematical Society, Providence, R.I., 1978.) . Este trabajo se divide en diez capítulos, de lo cuales estudiaremos los primeros ocho, como se detalla a continuación:
Mini-curso:
Operador de Transferencia y sus aplicaciones.
Fabian Contreras
PUCV.
29 de octubre, 15:40 hrs
Sala 2-2, Instituto de Matemáticas, PUCV.
Este minicurso consistirá de 8 sesiones en la cual introduciremos las herramientas necesarias para demostrar la existencia de medidas de probabilidad invariantes absolutamente continuas para aplicaciones del intervalo. Dentro de estas herramientas, está un importante operador lineal, a saber, el operador de Perron-Frobenius, para el cual revisaremos también otras aplicaciones, e.g., la regularidad de medidas físicas para aplicaciones expansoras por pedazos.
El principio de invariancia
Jiagang Yang
Universidade Federal Fluminense, Brasil
Lunes 08, martes 09 y miércoles 10 de enero, 11:30 hrs.
Sala 2-2
Instituto de Matemáticas, PUCV.
Introduction to partially hyperbolic diffeomorphisms
Jiagang Yang
Universidade Federal Fluminense, Brasil
Lunes 04, miércoles 06 y jueves 07 de diciembre, 11:30 hrs.
Sala 2-2, Instituto de Matemáticas, PUCV.
Abstract:
In the first lecture, I will introduce the class of partially hyperbolic diffeomorphisms so called skew product type and explain the construction of Shub’s example.
In the second one, we will introduce partially hyperbolic diffeomorphisms which are derived from Anosov and explain the construction of Mañe’s example.
In the last session we will introduce the absolute continuity of the center foliation, and explain Katok’s example that a full volume subset intersect each leaf of a foliation with at most one point (such a phenomena is called Fubini’s nightmare).
Between holomorphic dynamics and algebraic geometry
Matthieu Arfeux
PUCV
26 de agosto, 2 y 23 de septiembre, 16:00 hrs. Sala 2-2.
Regularity in partition and uniformity of multiplicative functions
Bernard Host.
Université Paris-Est Marne-la-Vallée – France.
12, 13 y 14 de enero, 14:30 hrs. Sala por confirmar.
Instituto de Matemática, Pontificia Universidad Católica de Valparaíso.
We study properties of uniformity vs non uniformity of bounded multiplicative functions. Here the word uniformity refers not only to the size of Fourier coefficients, but more generally to the largeness of the higher order Gowers norms. Our main result is a theorem of decomposition, allowing to write every multiplicative function as a sum of a very structured part and an uniform part. The tools used come the “higher order Fourier analysis” of Green and Tao, from finitary ergodic theory and from elementary number theory. In a second part I will present a combinatorial application to a problem of partition reguarity.
Joint work with Nikos Frantzikinakis.
Minicursos dictados por profesores visitantes
Probabilistic features of expanding dynamical systems with spectral techniques
Sandro Vaienti.
Centre de Physique théorique, Université de Marseille, France.
19, 20 y 22 de mayo, 16:00 hrs. Sala 2-2.
10 y 12 de de junio, 11:45 hrs. Sala 2-2.
Instituto de Matemática,
Pontificia Universidad Católica de Valparaíso.
The two last lectures will be about how to get statistical properties and limit theorems by using spectral techniques.
Propiedades estadísticas de los sistemas dinámicos.
Jose F. Alves
Universidade de Porto, Portugal
24 al 29 de marzo, Universidad Austral de Chile (Valdivia).
21 al 25 de abril, Universidad Católica del Norte (Antofagasta).
12 al 17 de mayo, Pontificia Universidad Católica de Valparaíso, Valparaíso.
Queremos invitar a la comunidad, académicos y estudiantes a participar de este curso que se realizará en tres partes, en la Universidad Austral, UCN y PUCV respectivamente.
En cada una de las semanas, se dictará un capítulo del curso de 10 sesiones. A saber,
1. Introducción a la teoría ergódica.
2. Transformaciones expansoras por parte
3. Medidas SRB y difeomorfismos parcialmente hiperbólicos.
El curso completo puede ser usado como curso de un programa regular de pre o postgrado. También es posible asistir a una de las semanas en específico, como un minicurso.
Les agradecemos difundir la información entre los interesados.
Informaciones y contactos:
Coordinador del curso en la Universidad Austral Eugenio Trucco (etrucco86@gmail.com)
Coordinador del curso en la UCN Bernardo San Martin (sanmarti@ucn.cl)
Coordinador del curso en la PUCV Carlos Vásquez (carlos.vasquez@ucv.cl)
Esta actividad se enmarca en el Proyecto Atracción de Capital Humano Avanzado del Extranjero – Modalidad Estadías Cortas (MEC), Convocatoria 2013, FOMENTO DE UNA RED DE COOPERACION CIENTIFICA REGIONAL EN SISTEMAS DINAMICOS.
Materiales
Dinámica Porteña en la 4ta Escuela de Doctorado de Valparaíso
Conferencia Inaugural:
Attractors with equilibrium.
María Jose Pacífico
(U. Federal de Rio de Janeiro, Brasil)
Miércoles 14 de Octubre, 17.00 hrs.
Presentación PDF: Zeze4Escuela
4 Semestres
Más información
4 Semestres
Más información
4 Semestres
Más información
8 Semestres
Más información
8 Semestres
Más información