# Rotation theory of torus homeomorphisms IV

Alejandro Kocsard Andrés Koropecki

Universidade Federal Fluminense Brasil

# Global dynamics beyond uniform hyperbolicity 2015

3 🕨 🖌 3

# Brouwer-Le Calvez foliations

A Brouwer-Le Calvez pair for  $f: S \to S$  is a pair  $(\mathcal{F}, (f_t)_{t \in [0,1]})$  of

- An oriented topological foliation  $\mathcal{F}$  with singularities;
- An isotopy  $(f_t)_{t\in[0,1]}$  from  $f_0 = \mathrm{Id}$  to  $f_1 = f$

such that:

- $X:=\operatorname{Sing}(\mathcal{F})$  is fixed pointwise by the isotopy, and
- $\mathcal{F}$  is dynamically transverse: for every  $z \in S \setminus X$ , the arc  $\gamma_z = (f_t(z))_{t \in [0,1]}$  is homotopic in  $S \setminus X$  (with fixed endpoints) to an arc positively transverse to  $\mathcal{F}$  (i.e. crossing leaves left to right).

### Theorem [LC05, Jau14] + Beguin-Crovisier-Le Roux

S surface, f isotopic to  $\operatorname{Id},$  then "BLC pairs exist".

(日) (周) (三) (三)

# Linking numbers for open topological disks

Suppose  $S = \mathbb{R}^2$ ,  $(\mathcal{F}, (f_t)_{t \in [0,1]})$  a BLC pair,  $X = \operatorname{Sing}(\mathcal{F})$ .

- Let U be an open invariant topdisk.
- For  $p \in U \backslash X$  we may define a linking number L(U, p):
- Choose  $z \in U \setminus X$ . Then  $\gamma_z = (f_t(z))_{t \in [0,1]}$  is not a loop, but
- choose any arc  $\sigma \subset U$  joining f(z) to z,

• define 
$$L(U, p) = wind(\alpha, p)$$
.

• Does not depend on the choice of  $\sigma$  or z (exercise).

#### Linking lemma

Every  $z \in \mathbb{R}^2 \setminus X$  has a neighborhood  $V_z$  such that if some open f-invariant topdisk U without wandering points intersects  $V_z$ , then one of the sets  $\omega(\Gamma_z)$  or  $\alpha(\Gamma_z)$  consists of a single point  $p \in X$  and either (a)  $p \in U$ , or (b)  $L(U,p) \neq 0$ ,

# Proof of Bounded Disks Lemma

- $f \in \operatorname{Homeo}_{0,\mu}(\mathbb{T}^2)$  and  $\operatorname{Fix}(f)$  is inessential totally disconnected.
- Suppose there is an invariant topological disk U such that  $\mathcal{D}(U) = \infty$ .
- Choose a lift  $\widetilde{U}$  of U and a lift  $\widetilde{f}$  such that  $\widetilde{f}(\widetilde{U}) = \widetilde{U}$ .
- $((f_t), \mathcal{F})$  a BLC pair for f that lifts to a BLC pair  $((\tilde{f}_t), \tilde{\mathcal{F}})$  for  $\tilde{f}$ .
- $\pi|_{\widetilde{U}} : \widetilde{U} \to U$  is a homeomorphism and  $\pi \widetilde{f}|_{\widetilde{U}} = f\pi|_{\widetilde{U}}$ , so  $\widetilde{U}$  has finite area and no wandering points.

• Same thing for 
$$\widetilde{U} + v$$
,  $v \in \mathbb{Z}^2$ 

- Choose  $\{V_z : z \in \mathbb{R}^2\}$  as in the Linking Lemma. Equivariant.
- Fix a connected  $Q \subset \mathbb{R}^2$  such that  $[0,1]^2 \subset Q$  and  $\partial Q \cap \widetilde{X} = \emptyset$ .
- Cover  $\partial Q$  with finitely many  $V_{z_1}, \ldots, V_{z_m}$ .
- A = union of  $\omega$  or  $\alpha$ -limit sets of  $\widetilde{\Gamma}_{z_i}$ 's which are singletons. Finite.
- $\widetilde{U}$  has a fixed point.  $link(\widetilde{U}) = \{p \in X \setminus \widetilde{U} : L(\widetilde{U}, p) \neq 0\}$  compact.
- $\widetilde{U} + v$  intersects  $\partial Q \implies \text{link}(\widetilde{U} + v) \cap A \neq \emptyset$  or  $(\widetilde{U} + v) \cap A \neq \emptyset$ .
- $link(\widetilde{U} + v) = link(\widetilde{U}) + v$
- Blackboard.

ヘロン 人間と 人間と 人間と

# Rotational deviations: rotation sets with empty interior

Suppose  $\rho(\widetilde{f})$  is an interval.

If f has no periodic points:

- Alejandro's talks.
- If f has periodic points.
  - interval with irrational slope and exactly one rational endpoint;
  - interval with rational slope. Reduces to  $\{p/q\} \times [a, b]$ ;
  - interesting case:  $\{0\} \times [a,b]$  (consider  $\widetilde{g} = \widetilde{f}^q (p,0)$ )

# Vertical rotation interval with periodic points

## Theorem [GKT14]

If  $\rho(\tilde{f}) = \{0\} \times [a, b]$ , then  $\tilde{f}$  has uniformly bounded horizontal displacement:  $\sup_{z \in \mathbb{R}^2, n \in \mathbb{N}} |(\tilde{f}^n(z) - z)_1| < \infty$  ("f is annular"). In fact, there exists an invariant "vertical" topological annulus.

#### Remark

The first part of the theorem was proved in the general setting (no area-preserving hypothesis) by Dávalos [Dáv13].

#### Tools

- Bounded disks lemma / strictly toral dynamics.
- $\omega$ -sets ("stable sets" of  $\infty$  in the universal covering);
- geometric / quasiconvexity properties of eventually free chains;
- prime ends rotation numbers / boundary dynamics.

#### $\omega\text{-sets}$

Notation:

• 
$$H_t^+ = \{(x,y) : x \ge t\}, \ H^- = \{(x,y) : x \le t\}.$$

•  $f \in \operatorname{Homeo}_0(\mathbb{T}^2)$  and  $\widetilde{f}$  a lift.

• the set  $K^+ = \bigcap_{n=-\infty}^{\infty} \widetilde{f}^n(H_t^+) \cup \{\infty\}$  is compact in  $\mathbb{R}^2 \cup \{\infty\}$ .

• 
$$K_{\infty}^+$$
 = connected component of K containing  $\infty$ .

• Define 
$$\omega_t^+(\widetilde{f}) = K_\infty^+ \backslash \infty$$
.

Alternatively, denote ucc(C) the union of all unbounded connected components of a set C. Then

$$\omega_t^+(\tilde{f}) = \operatorname{ucc} \big(\bigcap_{n=-\infty}^{\infty} \tilde{f}^n(H_t^+)\big).$$

The set  $\omega_t^-(\widetilde{f})$  is defined analogously.

## Properties of $\omega$ -sets

$$\omega_t^{\pm}(\widetilde{f}) = \operatorname{ucc}\left(\bigcap_{n=-\infty}^{\infty} \widetilde{f}^n(H_t^{\pm})\right).$$

The sets  $\omega_t^{\pm}(\widetilde{f})$  may be empty. But when they are not:

- They are closed,  $\tilde{f}$ -invariant.
- Every connected component of  $\omega^{\pm}$  is unbounded.

• 
$$\mathbb{R}^2 \setminus \omega^{\pm}$$
 is simply connected ( $\simeq \mathbb{R}^2$ ).

• 
$$\omega_t^{\pm} + (0, b) = \omega_t^{\pm}$$
 for all  $b \in \mathbb{Z}$ .

• If s > t, then  $\omega_s^+ \subset \omega_t^+$  and  $\omega_t^- \subset \omega_s^-$ .

• 
$$\omega_t^{\pm} + (a, 0) = \omega_{t+a}^{\pm}$$
 if  $a \in \mathbb{Z}$ .

• So  $\omega_k^+ = \omega_0 + (k, 0)$ ,  $k \in \mathbb{Z}$  is a decreasing sequence of sets.

#### Lemma

$$\rho(\widetilde{f}) \subset \{0\} \times \mathbb{R} \implies \omega_0^+ \neq \emptyset \neq \omega_0^- \ (\implies \omega_t^\pm \neq \emptyset \text{ for all } t\}.$$

$$W_n = \operatorname{ucc} \left( \bigcap_{k=-n}^n \widetilde{f}^k(H_0^+) \right), \quad \omega_0^+ = \bigcap_{n \ge 0} W_n$$

• If 
$$W_n \subset H_0^+ + (1,0)$$
 then  $W_{2n} \subset W_n + (1,0) \subset H^+ + (2,0)$   
•  $\implies W_{jn} \subset H_0^+ + (j,0)$  for all  $j \in \mathbb{N}$   
•  $\partial W_{jn} \subset \bigcup_{k=-jn}^{jn} \tilde{f}^k (\partial H_0^+) \subset H_0^+ + (j,0);$   
•  $\implies \exists z_j = (0, y_j), k_j \in \mathbb{Z}$  with  $|k_j| \leq jn, (\tilde{f}^{k_j}(z_j))_1 \geq j.$   
 $\left| \frac{(\tilde{f}^{k_j}(z_j) - z_j)_1}{k_j} \right| \geq \left| \frac{j}{k_j} \right| \geq \frac{1}{n}.$  not possible!

So  $W_n \cap [0,1]^2 \neq \emptyset$  for all  $n \implies \omega_0^+ \neq \emptyset$ .

ヘロト 人間 ト くほ ト くほ トー

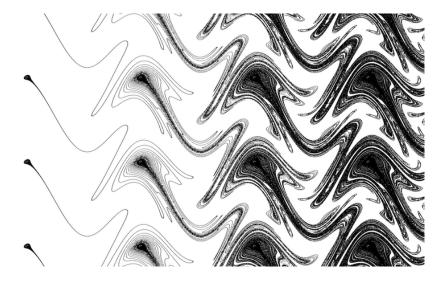
#### Remark

 $H_s^{\pm} \subset \omega_0^{\pm}$  for some  $s \implies \widetilde{f}$  has bounded horizontal displacement.

Thus if we assume that  $\rho(\tilde{f}) = \{0\} \times [a, b]$  and  $\tilde{f}$  does NOT have uniformly bounded horizontal displacement:

- $\omega_0^+$  and  $\omega_0^-$  are nonempty;
- They do not contain a half-plane;
- $\mathbb{R}^2 \setminus \omega_0^+$  is unbounded to the right,  $\mathbb{R}^2 \setminus \omega_0^-$  is unbounded to the left.

## $\omega$ -sets: example



э.

・ロト ・回ト ・ヨト ・

# Vertical rotation interval

#### Proof of:

 $\rho(\widetilde{f}) = \{0\} \times [a, b] \implies$  uniformly bounded horizontal displacement.

Suppose horizontal displacement is not uniformly bounded.

- f has strictly toral dynamics; C(f) = Ess(f) is fully essential.
- We may assume  $\{0\} \times [-1,1] \subset \rho(\widetilde{f})$  (replace  $\widetilde{f}$  by  $\widetilde{f}^n (0,m)$ ).
- There are points  $z_i$  such that  $\widetilde{f}(z_i) = z_i + (0, i)$ ,  $i \in \{-1, 0, 1\}$ .

• These points can be chosen in  $\mathcal{C}(f)$ .

- $\omega_0^+$  and  $\omega_0^-$  are nonempty.
- $\mathcal{C}(f) \subset \overline{\pi(\omega_0^+)} \cap \overline{\pi(\omega_0^-)}.$
- Fact:  $\omega_k^- \cap \omega_0^+ \neq \emptyset$  for some  $k \in \mathbb{Z}$ .
- Fact (difficult): There is  $k \in \mathbb{Z}$  such that  $\{z_{-1}, z_0, z_1\} \subset \omega_k^-$ .

# Strictly toral dynamics

## Theorem [KT14]

One of the following holds:

- (1)  $\exists n > 0$ ,  $\operatorname{Fix}(f^n)$  is essential;
- (2)  $\exists n > 0$ ,  $f^n$  is "annular" ( $\exists v \in \mathbb{Z}^2_*$ ,  $\langle \Delta^n_{\tilde{f}}(z), v \rangle$  bounded).
- (3)  $\operatorname{Ine}(f)$  is a disjoint union of periodic homotopically bounded topdisks,  $\operatorname{Ess}(f)$  is a fully essential continuum and  $\mathcal{C}(f) = \operatorname{Ess}(f)$ . Moreover:
  - $\mathcal{C}(f)$  is weakly syndetically transitive;
  - For any lift  $\tilde{f}$  of f and U neighborhood of  $x \in \mathcal{C}(f)$ ,  $\rho(\tilde{f}, U) = \rho(\tilde{f})$ .
    - Every rotation vector realized by a periodic point or ergodic measure can be realized in  $\mathcal{C}(f).$

If (1) or (2) holds, we may think of f as a "reducible" map. Otherwise we say f is strictly toral.

イロト イヨト イヨト イヨト

# Dynamics in the cylinder

- $\mathbb{A}=\mathbb{R}^2/\!\langle T^2\rangle$  where  $T\colon (x,y)\mapsto (x,y+1)$
- $\tau : \mathbb{R}^2 \to \mathbb{A}$  projection;
- $\widehat{f} \colon \mathbb{A} \to \mathbb{A}$  induced by  $\widetilde{f}$ ;
- Claim:  $\hat{f}$  has no wandering points.
- $W = \tau(\omega_k^-)$  contains  $\hat{z}_i = \tau(z_i)$ ,  $i \in \{-1, 0, 1\}$ .
- Compactify with topological ends:  $\mathbb{S}^2 = \mathbb{A} \cup \{\pm \infty\}.$
- $U = \mathbb{S}^2 \setminus (W \cup \{-\infty\})$  is an open  $\widehat{f}$ -invariant topological disk.

## Theorem [KLCN15]

If  $h \in \text{Homeo}_+(\mathbb{S}^2)$  leaves invariant an open topdisk U without wandering points and the prime ends rotation number in U is nonzero, then there is at most one fixed point in  $\mathbb{S}^2 \setminus U$ .

Replace  $\tilde{f}$  by  $T\tilde{f}$  if needed to guarantee nonzero rotation number. But there is a fixed point in  $W(\hat{z}_0 \text{ or } \hat{z}_{-1})$  besides  $-\infty$ . Contradiction.

## References



- P. Dávalos, On annular maps of the torus and sublinear diffusion.
- N. Guelman, A. Koropecki, and F. A. Tal, <u>A characterization of annularity for area-preserving toral homeomorphisms</u>, Math. Z. **276** (2014), no. 3-4, 673–689. MR 3175156
- O. Jaulent, Existence d'un feuilletage positivement transverse \'a un hom\'eomorphisme de surface, Annales de l'institut Fourier **64** (2014), no. 4, 1441–1476.
- A. Koropecki, P. Le Calvez, and M. Nassiri, <u>Prime ends rotation numbers and periodic points</u>, Duke Math. J. **164** (2015), no. 3, 403–472. MR 3314477
  - A. Koropecki and F. A. Tal, Strictly toral dynamics, Invent. Math. 196 (2014), no. 2, 339-381. MR 3193751
- P. Le Calvez, <u>Une version feuilletée équivariante du théorème de translation de Brouwer</u>, Publ. Math. Inst. Hautes Études Sci. (2005), no. 102, 1–98. MR 2217051 (2007m:37100)

(日) (周) (三) (三)