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Brouwer-Le Calvez foliations

A Brouwer-Le Calvez pair for f : S Ñ S is a pair pF , pftqtPr0,1sq of

An oriented topological foliation F with singularities;

An isotopy pftqtPr0,1s from f0 “ Id to f1 “ f

such that:

X :“ SingpFq is fixed pointwise by the isotopy, and

F is dynamically transverse: for every z P SzX, the arc
γz “ pftpzqqtPr0,1s is homotopic in SzX (with fixed endpoints) to an
arc positively transverse to F (i.e. crossing leaves left to right).

Theorem [LC05, Jau14] + Beguin-Crovisier-Le Roux

S surface, f isotopic to Id, then “BLC pairs exist”.
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Linking numbers for open topological disks

Suppose S “ R2, pF , pftqtPr0,1sq a BLC pair, X “ SingpFq.
Let U be an open invariant topdisk.

For p P UzX we may define a linking number LpU, pq:

Choose z P UzX. Then γz “ pftpzqqtPr0,1s is not a loop, but

choose any arc σ Ă U joining fpzq to z,

define LpU, pq “ windpα, pq.

Does not depend on the choice of σ or z (exercise).

Linking lemma

Every z P R2zX has a neighborhood Vz such that if some open f -invariant
topdisk U without wandering points intersects Vz, then one of the sets
ωpΓzq or αpΓzq consists of a single point p P X and either

(a) p P U , or

(b) LpU, pq ‰ 0,
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Proof of Bounded Disks Lemma

f P Homeo0,µpT2q and Fixpfq is inessential totally disconnected.

Suppose there is an invariant topological disk U such that DpUq “ 8.

Choose a lift rU of U and a lift rf such that rfprUq “ rU .

ppftq,Fq a BLC pair for f that lifts to a BLC pair pp rftq, rFq for rf .

π|
rU

: rU Ñ U is a homeomorphism and π rf |
rU
“ fπ|

rU
, so rU has finite

area and no wandering points.

Same thing for rU ` v, v P Z2

Choose tVz : z P R2u as in the Linking Lemma. Equivariant.

Fix a connected Q Ă R2 such that r0, 1s2 Ă Q and BQX rX “ H.

Cover BQ with finitely many Vz1 , . . . , Vzm .

A “ union of ω- or α-limit sets of rΓzi ’s which are singletons. Finite.
rU has a fixed point. linkprUq “ tp P XzrU : LprU, pq ‰ 0u compact.
rU ` v intersects BQ ùñ linkprU ` vq XA ‰ H or prU ` vq XA ‰ H.

linkprU ` vq “ linkprUq ` v

Blackboard.
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Rotational deviations: rotation sets with empty interior

Suppose ρp rfq is an interval.

If f has no periodic points:

Alejandro’s talks.

If f has periodic points.

interval with irrational slope and exactly one rational endpoint;

interval with rational slope. Reduces to tp{qu ˆ ra, bs;

interesting case: t0u ˆ ra, bs (consider rg “ rf q ´ pp, 0q)
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Vertical rotation interval with periodic points

Theorem [GKT14]

If ρp rfq “ t0u ˆ ra, bs, then rf has uniformly bounded horizontal
displacement: supzPR2,nPN|p rfnpzq ´ zq1| ă 8 (“f is annular”). In fact,
there exists an invariant “vertical” topological annulus.

Remark

The first part of the theorem was proved in the general setting (no
area-preserving hypothesis) by Dávalos [Dáv13].

Tools

Bounded disks lemma / strictly toral dynamics.

ω-sets (“stable sets” of 8 in the universal covering);

geometric / quasiconvexity properties of eventually free chains;

prime ends rotation numbers / boundary dynamics.
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ω-sets

Notation:

H`t “ tpx, yq : x ě tu, H´ “ tpx, yq : x ď tu.

f P Homeo0pT2q and rf a lift.

the set K` “
Ş8
n“´8

rfnpH`t q Y t8u is compact in R2 Y t8u.

K`
8 “ connected component of K containing 8.

Define ω`t p
rfq “ K`

8z8.

Alternatively, denote uccpCq the union of all unbounded connected
components of a set C. Then

ω`t p
rfq “ ucc

`

8
č

n“´8

rfnpH`t q
˘

.

The set ω´t p
rfq is defined analogously.
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Properties of ω-sets

ω˘t p
rfq “ ucc

`

8
č

n“´8

rfnpH˘t q
˘

.

The sets ω˘t p
rfq may be empty. But when they are not:

They are closed, rf -invariant.

Every connected component of ω˘ is unbounded.

R2zω˘ is simply connected (» R2).

ω˘t ` p0, bq “ ω˘t for all b P Z.

If s ą t, then ω`s Ă ω`t and ω´t Ă ω´s .

ω˘t ` pa, 0q “ ω˘t`a if a P Z.

So ω`k “ ω0 ` pk, 0q, k P Z is a decreasing sequence of sets.
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Lemma

ρp rfq Ă t0u ˆ R ùñ ω`0 ‰ H ‰ ω´0 ( ùñ ω˘t ‰ H for all t).

Wn “ ucc
`

n
č

k“´n

rfkpH`0 q
˘

, ω`0 “
č

ně0

Wn

If Wn Ă H`0 ` p1, 0q then W2n ĂWn ` p1, 0q Ă H` ` p2, 0q
§ ùñ Wjn Ă H`

0 ` pj, 0q for all j P N

BWjn Ă
Ťjn
k“´jn

rfkpBH`0 q Ă H`0 ` pj, 0q;

ùñ D zj “ p0, yjq, kj P Z with |kj | ď jn, p rfkj pzjqq1 ě j.∣∣∣∣∣p rfkj pzjq ´ zjq1kj

∣∣∣∣∣ ě
∣∣∣∣ jkj

∣∣∣∣ ě 1

n
. not possible!

So Wn X r0, 1s
2 ‰ H for all n ùñ ω`0 ‰ H.
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Remark

H˘s Ă ω˘0 for some s ùñ rf has bounded horizontal displacement.

Thus if we assume that ρp rfq “ t0u ˆ ra, bs and rf does NOT have
uniformly bounded horizontal displacement:

ω`0 and ω´0 are nonempty;

They do not contain a half-plane;

R2zω`0 is unbounded to the right, R2zω´0 is unbounded to the left.
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ω-sets: example
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Vertical rotation interval

Proof of:

ρp rfq “ t0u ˆ ra, bs ùñ uniformly bounded horizontal displacement.

Suppose horizontal displacement is not uniformly bounded.

f has strictly toral dynamics; Cpfq “ Esspfq is fully essential.

We may assume t0u ˆ r´1, 1s Ă ρp rfq (replace rf by rfn ´ p0,mq).

There are points zi such that rfpziq “ zi ` p0, iq, i P t´1, 0, 1u.

These points can be chosen in Cpfq.
ω`0 and ω´0 are nonempty.

Cpfq Ă πpω`0 q X πpω
´
0 q.

Fact: ω´k X ω
`
0 ‰ H for some k P Z.

Fact (difficult): There is k P Z such that tz´1, z0, z1u Ă ω´k .
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Strictly toral dynamics

Theorem [KT14]

One of the following holds:

(1) Dn ą 0, Fixpfnq is essential;

(2) Dn ą 0, fn is “annular” (Dv P Z2
˚, x∆n

rf
pzq, vy bounded).

(3) Inepfq is a disjoint union of periodic homotopically bounded topdisks,
Esspfq is a fully essential continuum and Cpfq “ Esspfq. Moreover:

§ Cpfq is weakly syndetically transitive;
§ For any lift rf of f and U neighborhood of x P Cpfq, ρp rf, Uq “ ρp rfq.
§ Every rotation vector realized by a periodic point or ergodic measure

can be realized in Cpfq.
If (1) or (2) holds, we may think of f as a “reducible” map. Otherwise we
say f is strictly toral.

Kocsard, Koropecki (UFF) Rotation theory IV Olmué, 2015 13



Dynamics in the cylinder

A “ R2{xT 2y where T : px, yq ÞÑ px, y ` 1q

τ : R2 Ñ A projection;
pf : AÑ A induced by rf ;

Claim: pf has no wandering points.

W “ τpω´k q contains pzi “ τpziq, i P t´1, 0, 1u.

Compactify with topological ends: S2 “ AY t˘8u.
U “ S2zpW Y t´8uq is an open pf -invariant topological disk.

Theorem [KLCN15]

If h P Homeo`pS2q leaves invariant an open topdisk U without wandering
points and the prime ends rotation number in U is nonzero, then there is
at most one fixed point in S2zU .

Replace rf by T rf if needed to guarantee nonzero rotation number.
But there is a fixed point in W (pz0 or pz´1) besides ´8. Contradiction.
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