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Brouwer-Le Calvez foliations

A Brouwer-Le Calvez pair for f: S — S'is a pair (F, (ft)se[o,1]) of
@ An oriented topological foliation F with singularities;
o An isotopy (ft)e[o,1] from fo =1d to f1 = f
such that:
e X := Sing(F) is fixed pointwise by the isotopy, and
e F is dynamically transverse: for every z € S\ X, the arc

= (ft(2))te[0,1] is homotopic in S\ X (with fixed endpoints) to an
arc p05|t|ve|y transverse to F (i.e. crossing leaves left to right).

Theorem [LCO5, Jaul4] + Beguin-Crovisier-Le Roux
S surface, f isotopic to Id, then “BLC pairs exist”.
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Linking numbers for open topological disks
Suppose S = R?, (F, (ft)te[o,1]) @ BLC pair, X = Sing(F).

@ Let U be an open invariant topdisk.

e For p e U\X we may define a linking number L(U, p):
Choose z € U\X. Then 7, = (f(2))se[o,1] is not a loop, but
choose any arc o < U joining f(z) to z,
define L(U,p) = wind(«, p).

Does not depend on the choice of o or z (exercise).

Linking lemma

Every z € R?\ X has a neighborhood V, such that if some open f-invariant
topdisk U without wandering points intersects V,, then one of the sets
w(T';) or a(T',) consists of a single point p € X and either

(a) pe U, or

(b) L(U,p) # 0,

v
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Proof of Bounded Disks Lemma

f € Homeoy ,,(T?) and Fix(f) is inessentiat totally disconnected.

Suppose there is an invariant topological disk U such that D(U) = .

Choose a lift U of U and a lift f such that f(U) = U.
((fs), F) a BLC pair for f that lifts to a BLC pair ((/f;), ) for f.

uhE U — U is a homeomorphism and 7rf|U frlg, so U has finite
area and no wandering points.

Same thing for U + v, v € Z2

Choose {V, : z € R?} as in the Linking Lemma. Equivariant.

Fix a connected @ < R? such that [0,1]> = Q and 0Q N X = .
Cover 0@ with finitely many V,...,V,, .

A = union of w- or a-limit sets of fz 's which are singletons. Finite.
U has a fixed point. link(J/) = {p e X\U : L(U,p) # 0} compact.
U+ v intersects 0Q —> link(U +v)nA# For (U+v)nA#F.
link(U + v) = link(U) + v

Blackboard.
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Rotational deviations: rotation sets with empty interior

~

Suppose p(f) is an interval.

If f has no periodic points:
@ Alejandro’s talks.

If f has periodic points.

@ interval with irrational slope and exactly one rational endpoint;

@ interval with rational slope. Reduces to {p/q} x [a,b];
@ interesting case: {0} x [a,b| (consider § = fq —(p,0))
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Vertical rotation interval with periodic points

Theorem [GKT14]

If p(f) = {0} x [a,b], then thas uniformly bounded horizontal
displacement: sup,cg2 nen|(f"(2) — 2)1] < oo (“f is annular”). In fact,
there exists an invariant “vertical” topological annulus.

Remark

The first part of the theorem was proved in the general setting (no
area-preserving hypothesis) by Davalos [Dav13].

Tools
@ Bounded disks lemma / strictly toral dynamics.
@ w-sets (“stable sets” of oo in the universal covering);
@ geometric / quasiconvexity properties of eventually free chains;

@ prime ends rotation numbers / boundary dynamics.
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w-sets

Notation:
o HY ={(z,y):x=t}, H = {(z,y): z < t}.
o fe Homeoo(’]I‘Q) and f a lift.
o the set K+ = N*___ f™(H;") U {00} is compact in R? U {c0}.
e K} = connected component of K containing 0.
o Define w; (f f) = K3\oo.

Alternatively, denote ucc(C') the union of all unbounded connected
components of a set C. Then

wi'(f) = uc ﬂf”H+

~

The set w, (f) is defined analogously.
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Properties of w-sets

n=—oo
The sets w;—”(f) may be empty. But when they are not:
They are closed, f—invariant.

Every connected component of w is unbounded.
R?\w? is simply connected (~ R?).

wi 4 (0,b) = wi for all be Z.

If s >t, then w} < w,” and w; < wjy .

wi + (a,0) = wi, ifaeZ

So w;” =wp + (k,0), k € Z is a decreasing sequence of sets.
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Lemma
p(f)c{O}mewJ#ﬁ;ﬁwa(: wi # & for all t). J

W—ucc ﬂ Ho ﬂW

k=—n n=0
o If W, < HF + (1,0) then Wa, < Wy + (1,0) € H* + (2,0)
» = Wj, < Hf +(4,0) forall jeN
o OWjnc UL ;, [HOHS) < Hy + (5,0);
o —> 32 = (0,4)), kj € Z with [k;| < jn, (F* ()1 > .
J

‘(f’“( D —znl| g

1 .
> —. not possible!
n

k) “ %

So W, n[0,1]? # & forall n = wy # .
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Remark

HE c wa—r for some s — f has bounded horizontal displacement.

Thus if we assume that p(f) = {0} x [a,b] and f does NOT have
uniformly bounded horizontal displacement:

e wyi and w; are nonempty;
@ They do not contain a half-plane;

e R%\w is unbounded to the right, R*\w; is unbounded to the left.
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w-sets: example
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Vertical rotation interval

Proof of:

p(f) = {0} x [a,b] = uniformly bounded horizontal displacement.

Suppose horizontal displacement is not uniformly bounded.
@ f has strictly toral dynamics; C(f) = Ess(f) is fully essential.
o) (replace by — (0,m)).
) =2z +(0,4), i e {—1,0,1}.

@ These points can be chosen in C(f).

e We may assume {0} x [—1,1] <

@ There are points z; such that f(zz

@ wy and wy are nonempty.

C(f) e m(wy) nm(wy).

Fact: w;, nwg # & for some k € Z.

Fact (difficult): There is k € Z such that {z_1, 20, 21} < wy, .
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Strictly toral dynamics

Theorem [KT14]

One of the following holds:

(1) 3In > 0, Fix(f") is essential;

(2) In >0, f™is “annular’ (v e Z2, <A}l(z),v> bounded).

(3) Ine(f) is a disjoint union of periodic homotopically bounded topdisks,
Ess(f) is a fully essential continuum and C(f) = Ess(f). Moreover:

C(f) is weakly syndetically transitive;
For any lift f of f and U neighborhood of x € C(f), p(f,U) = p(f)-
Every rotation vector realized by a periodic point or ergodic measure

can be realized in C(f).
If (1) or (2) holds, we may think of f as a “reducible” map. Otherwise we
say f is strictly toral.

v
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Dynamics in the cylinder

o A =TR?/{T?) where T: (z,y) — (z,y + 1)

7: R? — A projection;

f: A — A induced by f;

Claim: f’ has no wandering points.

W = 7(w,, ) contains z; = 7(z;), i € {—1,0,1}.

Compactify with topological ends: S = A U {+0}.

U = S?\(W U {—0}) is an open f-invariant topological disk.

Theorem [KLCN15]

If h € Homeo (S?) leaves invariant an open topdisk U without wandering
points and the prime ends rotation number in U is nonzero, then there is
at most one fixed point in S?\U.

Replace f by Tf if needed to guarantee nonzero rotation number.
But there is a fixed point in W (Zp or Z_1) besides —oo. Contradiction.
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