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Area-preserving homeomorphisms

From now on, f preserves lebesgue measure µ.

Remark

In the topological setting, by the Oxtoby-Ulam theorem this is equivalent
to saying that f preserves a non-atomic measure of full support: for any
such measure ν there exists a homeomorphism h such that h˚pνq “ µ.

The mean rotation vector ρp rf, µq “
ş

∆
rf
dµ is particularly useful.

ρp rf, µq “ p0, 0q ùñ Fixp rfq ‰ H [Fra88, LC97];

In particular, if ρp rf, µq is rational, it is realized by a periodic point;

rf P ĄDiff
r

0,µpT2q ÞÑ ρp rf, µq P R2 is a group homomorphism (exercise);

In particular, it is easy to perturb: ρp rf ` vq “ ρp rfq ` v @v P R2;

Cr-generically in Diffr0,µpT2q there are periodic points;

Cr-generically in Diffr0,µpT2q, the rotation set has nonempty interior.
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Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence [KT14b])

If f is area-preserving and irrotational (i.e. ρp rfq “ tp0, 0qu), then almost
every z P R2 is rf -recurrent.

Theorem [KT14b, Tal15, LCT15]

If f is area-preserving and irrotational, then either Fixpfq is essential or
the displacement is uniformly bounded: supzPR2,nPZ }

rfnpzq ´ z} ă 8.

Question

Does the recurrence on the lift hold for irrotational area-preserving
homeomorphisms on arbitrary surfaces?
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Irrotational example

Irrotational diffeomorphisms with unbounded deviations [KT14a]

There exists a C8 Bernoulli ( ùñ ergodic) diffeomorphism f with a lift rf
such that ρp rfq “ tp0, 0qu and the displacement is unbounded in all
directions. More specifically, the orbit of almost every point intersects
every fundamental domain in R2.

Find an open topological disk U in T2 in a way that its lift to R2

intersects every fundamental domain.

Choose a smooth ergodic diffeomorphism φ of the unit disk D which
is the identity on BD and φ´ Id goes to 0 sufficiently fast near BD
(Katok 1979).

Extend as the identity on T2zU .

Simpler example: blow up an orbit of a minimal flow on T2.

Note: Fixpfq is huge!.
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Unbounded disk (with direction)
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Area-preserving homeomorphisms

Two questions

(1) f irrotational + unbounded displacement ùñ huge fixed point set?
(T2zFixpfq Ă Ytinvariant disksu)

(2) Unbounded invariant topological disks ùñ huge fixed point set?

Yes!

(1):[KT14b, LCT15].

(2): [KT14c, KT15].

General philosophy

If an open connected set U is invariant by an area-preserving
homeomorphism, there are strong restrictions on the topology of BU
(unless f has a “huge” set of fixed points).

In the area-preserving setting, connected open invariant (periodic) sets
appear frequently: if U is open, the connected component of U in
Of pUq “

Ť

nPZ f
npUq is periodic. Also: KAM.
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Bounded disks lemma

Recall: U inessential ðñ every loop in U is trivial in T2. An arbitrary
set is inessential if it has an inessential neighborhood.

Covering diameter

For U open connected and inessential, DpUq “ diamppUq where pU is a lift
of U (= connected component of π´1pUq).

Bounded disks lemma [KT14c, KT15]

Suppose that f is area-preserving and Fixpfq is inessential. There exists
M ą 0 such that for any inessential open invariant connected set U one
has DpUq ďM .

It holds on any surface. There is a version for non-simply connected sets.
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Application: dynamically essential and inessential points

An open set U Ă T2 is fully essential in T2 if T2zU is inessential.

Dynamically essential/inessential points

x P Inepfq “ dynamically inessential points if there is a
neighborhood U of x such that Of pUq is inessential in T2.

x P Esspfq “ dynamically essential points if Of pUq is essential for
every neighborhood U of x.

x P Cpfq “ dynamically fully essential points if Of pUq is fully
essential for every neighborhood U of x.

Area preserving ùñ every x P Inepfq belongs to a periodic open topdisk.

Inepfq is open invariant;

Esspfq “ T2z Inepfq and Cpfq are compact invariant.

Note: Inepfq may be essential as a set, Esspfq may be inessential.
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Strictly toral dynamics

Theorem [KT14c]

One of the following holds:

(1) Dn ą 0, Fixpfnq is essential;

(2) Dn ą 0, fn is “annular” (Dv P Z2
˚, x∆n

rf
pzq, vy bounded).

(3) Inepfq is a disjoint union of periodic homotopically bounded topdisks,
Esspfq is a fully essential continuum and Cpfq “ Esspfq. Moreover:

§ Cpfq is weakly syndetically transitive;
§ For any lift rf of f and U neighborhood of x P Cpfq, ρp rf, Uq “ ρp rfq.
§ Every rotation vector realized by a periodic point or ergodic measure

can be realized in Cpfq.
If (1) or (2) holds, we may think of f as a “reducible” map. Otherwise we
say f is strictly toral.

Example: int ρp rfq ‰ H ùñ strictly toral (exercise).
There is a version for higher genus surfaces [KT15].
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Strictly toral dynamics
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Proof of theorem using BDL

Blackboard
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