Rotation theory of torus homeomorphisms III

Alejandro Kocsard Andrés Koropecki

Universidade Federal Fluminense Brasil

Global dynamics beyond uniform hyperbolicity 2015

(3)

Area-preserving homeomorphisms

From now on, f preserves lebesgue measure μ .

Remark

In the topological setting, by the Oxtoby-Ulam theorem this is equivalent to saying that f preserves a non-atomic measure of full support: for any such measure ν there exists a homeomorphism h such that $h_*(\nu) = \mu$.

The mean rotation vector $\rho(\widetilde{f},\mu) = \int \Delta_{\widetilde{f}} d\mu$ is particularly useful.

- $\rho(\widetilde{f},\mu) = (0,0) \implies \operatorname{Fix}(\widetilde{f}) \neq \emptyset$ [Fra88, LC97];
- In particular, if $\rho(\widetilde{f},\mu)$ is rational, it is realized by a periodic point;
- $\widetilde{f} \in \widetilde{\mathrm{Diff}}_{0,\mu}^r(\mathbb{T}^2) \mapsto \rho(\widetilde{f},\mu) \in \mathbb{R}^2$ is a group homomorphism (exercise);
- In particular, it is easy to perturb: $\rho(\widetilde{f} + v) = \rho(\widetilde{f}) + v \ \forall v \in \mathbb{R}^2$;
- C^r -generically in $\mathrm{Diff}_{0,\mu}^r(\mathbb{T}^2)$ there are periodic points;
- C^r -generically in $\operatorname{Diff}_{0,\mu}^r(\mathbb{T}^2)$, the rotation set has nonempty interior.

・日・ ・ 聞 ・ ・ 聞 ・ ・ 聞 ・

Irrotational area-preserving homeomorphisms

Theorem (Lifted Poincaré recurrence [KT14b])

If f is area-preserving and irrotational (i.e. $\rho(\tilde{f}) = \{(0,0)\}$), then almost every $z \in \mathbb{R}^2$ is \tilde{f} -recurrent.

Theorem [KT14b, Tal15, LCT15]

If f is area-preserving and irrotational, then either $\operatorname{Fix}(f)$ is essential or the displacement is uniformly bounded: $\sup_{z \in \mathbb{R}^2, n \in \mathbb{Z}} \|\widetilde{f}^n(z) - z\| < \infty$.

Question

Does the recurrence on the lift hold for irrotational area-preserving homeomorphisms on arbitrary surfaces?

イロト イポト イヨト イヨト

Irrotational example

Irrotational diffeomorphisms with unbounded deviations [KT14a]

There exists a C^{∞} Bernoulli (\implies ergodic) diffeomorphism f with a lift \tilde{f} such that $\rho(\tilde{f}) = \{(0,0)\}$ and the displacement is unbounded in all directions. More specifically, the orbit of almost every point intersects every fundamental domain in \mathbb{R}^2 .

- Find an open topological disk U in \mathbb{T}^2 in a way that its lift to \mathbb{R}^2 intersects every fundamental domain.
- Choose a smooth ergodic diffeomorphism ϕ of the unit disk \mathbb{D} which is the identity on $\partial \mathbb{D}$ and $\phi \mathrm{Id}$ goes to 0 sufficiently fast near $\partial \mathbb{D}$ (Katok 1979).
- Extend as the identity on $\mathbb{T}^2 \setminus U$.
- Simpler example: blow up an orbit of a minimal flow on \mathbb{T}^2 .

Note: Fix(f) is huge!.

イロト イポト イヨト イヨト

Unbounded disk (with direction)

< ロ > < 同 > < 三 > < 三

Area-preserving homeomorphisms

Two questions

- (1) f irrotational + unbounded displacement \implies huge fixed point set? $(\mathbb{T}^2 \setminus \operatorname{Fix}(f) \subset \cup \{\text{invariant disks}\})$
- (2) Unbounded invariant topological disks \implies huge fixed point set?

Yes!

- (1):[KT14b, LCT15].
- (2): [KT14c, KT15].

General philosophy

If an open connected set U is invariant by an area-preserving homeomorphism, there are strong restrictions on the topology of ∂U (unless f has a "huge" set of fixed points).

In the area-preserving setting, connected open invariant (periodic) sets appear frequently: if U is open, the connected component of U in $\mathcal{O}_f(U) = \bigcup_{n \in \mathbb{Z}} f^n(U)$ is periodic. Also: KAM.

Bounded disks lemma

Recall: U inessential \iff every loop in U is trivial in \mathbb{T}^2 . An arbitrary set is inessential if it has an inessential neighborhood.

Covering diameter

For U open connected and inessential, $\mathcal{D}(U) = \operatorname{diam}(\widehat{U})$ where \widehat{U} is a lift of U (= connected component of $\pi^{-1}(U)$).

Bounded disks lemma [KT14c, KT15]

Suppose that f is area-preserving and Fix(f) is inessential. There exists M > 0 such that for any inessential open invariant connected set U one has $\mathcal{D}(U) \leq M$.

It holds on any surface. There is a version for non-simply connected sets.

소리가 소문가 소문가 소문가 ...

Application: dynamically essential and inessential points

An open set $U \subset \mathbb{T}^2$ is fully essential in \mathbb{T}^2 if $\mathbb{T}^2 \setminus U$ is inessential.

Dynamically essential/inessential points

- x ∈ Ine(f) = dynamically inessential points if there is a neighborhood U of x such that O_f(U) is inessential in T².
- $x \in \text{Ess}(f) = \text{dynamically essential points if } \mathcal{O}_f(U)$ is essential for every neighborhood U of x.
- $x \in \mathcal{C}(f) =$ dynamically fully essential points if $\mathcal{O}_f(U)$ is fully essential for every neighborhood U of x.

Area preserving \implies every $x \in \text{Ine}(f)$ belongs to a periodic open topdisk.

• Ine(f) is open invariant;

• $\operatorname{Ess}(f) = \mathbb{T}^2 \setminus \operatorname{Ine}(f)$ and $\mathcal{C}(f)$ are compact invariant.

Note: Ine(f) may be essential as a set, Ess(f) may be inessential.

イロト イポト イヨト イヨト

Strictly toral dynamics

Theorem [KT14c]

One of the following holds:

- (1) $\exists n > 0$, $\operatorname{Fix}(f^n)$ is essential;
- (2) $\exists n > 0$, f^n is "annular" ($\exists v \in \mathbb{Z}^2_*$, $\langle \Delta^n_{\tilde{f}}(z), v \rangle$ bounded).
- (3) $\operatorname{Ine}(f)$ is a disjoint union of periodic homotopically bounded topdisks, $\operatorname{Ess}(f)$ is a fully essential continuum and $\mathcal{C}(f) = \operatorname{Ess}(f)$. Moreover:

 $\mathcal{C}(f)$ is weakly syndetically transitive;

For any lift f̃ of f and U neighborhood of x ∈ C(f), ρ(f̃, U) = ρ(f̃).
Every rotation vector realized by a periodic point or ergodic measure can be realized in C(f).

If (1) or (2) holds, we may think of f as a "reducible" map. Otherwise we say f is strictly toral.

Example: $\operatorname{int} \rho(\tilde{f}) \neq \emptyset \implies$ strictly toral (exercise). There is a version for higher genus surfaces [KT15].

・ロン ・四 ・ ・ ヨン ・ ヨン

Strictly toral dynamics

∃ ⊳

• • • • • • • • • • • •

Proof of theorem using BDL

Blackboard

イロト イヨト イヨト イヨト

References

Ē.

J. Franks, <u>Recurrence and fixed points of surface homeomorphisms</u>, Ergodic Theory Dynam. Systems **8*** (1988), no. Charles Conley Memorial Issue, 99–107. MR 967632 (90d:58124)

______, Bounded and unbounded behavior for area-preserving rational pseudo-rotations, Proc. Lond. Math. Soc. (3) 109 (2014), no. 3, 785–822. MR 3260294

_, Strictly toral dynamics, Invent. Math. 196 (2014), no. 2, 339-381. MR 3193751

A. Koropecki and F. A. Tal, Fully essential dynamics for area-preserving surface homeomorphisms, preprint (2015).

P. Le Calvez, Une généralisation du théorème de Conley-Zehnder aux homéomorphismes du tore de dimension deux, Ergodic Theory Dynam. Systems **17** (1997), no. 1, 71–86. MR 1440768 (98):58093)

P. Le Calvez and F. A. Tal, Forcing theory for transverse trajectories of surface homeomorhisms, preprint (2015).

F. A. Tal, <u>On non-contractible periodic orbits for surface homeomorphisms</u>, Ergodic Theory and Dynamical Systems **FirstView** (2015), 1–12.

(日) (周) (三) (三)